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Abstract— The ability to identify special properties such as
symmetries, linearity, or duality in Boolean logic functions is very
useful in many aspects of logic synthesis. Another tool whose uses
have lately been introduced for logic synthesis and classification
applications is the autocorrelation transform. This paper details
the connections between the autocorrelation coefficients and the
existence of these special properties.

I. I NTRODUCTION

Symmetry is a very useful property to identify in Boolean
functions. Partial symmetries exist in most Boolean functions,
particularly those used in practical applications. Both total and
partial symmetry properties are commonly used in synthesis
of digital circuits and in particular in the reduction of the
size of Binary Decision Diagram (BDD) representations of
functions [1], [2]. It is also useful to identify if a function is
dual, self-dual or linear.

Another technique often used in logic synthesis is that
of applying a mathematical transform to a logic function to
determine a series of coefficients. Transforms such as the
Hadamard and Walsh and their applications in digital logic
are well researched [3]. Another transform known as the au-
tocorrelation transform is less well-known. The autocorrelation
transform has been demonstrated to be of use in areas such
as variable ordering for Binary Decision Diagrams [4] and in
computing the estimateC(f) of a function’s complexity [5],
[6]. In addition, recent work [7] has used the autocorrelation
coefficients in classification of Boolean functions. If one is
to use the autocorrelation coefficients for one of these other
uses, it seems logical to make use of them in as many ways
as possible. Thus, this paper discusses how the autocorrelation
coefficients are affected by symmetries and other special
properties of switching functions, and how this knowledge
may be utilized.

II. BACKGROUND

We first present some notation and background.

A. Symmetries

There are a number of different types of symmetries. We
begin with the most restrictive symmetry. A Boolean function

is said to be totally symmetric if the output is unchanged by
any permutation of the inputs to the function. For example,
the majority functionf = x1 + x2 + x3 is totally symmetric,
as is the functionf = x1x2 + x2x3 + x1x3.

A slightly less restrictive form of symmetry is that of
partial symmetry. A Boolean function is said to be partially
symmetric, or possess a partial symmetry if the output is
unchanged by any permutation of some subset of the inputs
to the function.

A third type of symmetry is a symmetry of degree two. This
is a partial symmetry in which two subfunctions of the original
function are identical and also are independent of two of the
function’s variables. Symmetries of degree two are identified
by finding patterns where

f(x1, ..., a, ..., b, ..., xn) = f(x1, ..., c, ..., d, ..., xn),

a, b, c, d ∈ {0, 1}. Equivalence (E), non-equivalence (N) and
single-variable (S) symmetries as defined by Hurstet. al. [3]
are all types of symmetries of degree two, and are defined in
Table I. Without loss of generality these definitions label the
two variables of interest asn andn− 1.

Symmetry Definition
E{xn−1, xn} f(x1, ..., xn−2, 0, 0) = f(x1, ..., xn−2, 1, 1)
N{xn−1, xn} f(x1, ..., xn−2, 0, 1) = f(x1, ..., xn−2, 1, 0)
S{xn|xn−1} f(x1, ..., xn−2, 1, 0) = f(x1, ..., xn−2, 1, 1)
S{xn|xn−1} f(x1, ..., xn−2, 0, 0) = f(x1, ..., xn−2, 0, 1)

TABLE I

DEFINITIONS AND NOTATION FOR EQUIVALENCE, NON-EQUIVALENCE,

AND SINGLE-VARIABLE SYMMETRIES.

A more recently introduced symmetry has been termed
antisymmetries[8]. An antisymmetry occurs when permuting
all or a subset of variables results in the exact inverse of the
original function. This can also be extended to the symmetries
of degree two, as given in Table II.

B. Self-Duality

Definition 2.1: The dual of a functionf(x1, x2, . . . , xn) is
f(x1, x2, . . . , xn) and is denoted byfd [9].



Antisymmetry Definition
E{xn−1, xn} f(x1, ..., xn−2, 0, 0) = f(x1, ..., xn−2, 1, 1)

N{xn−1, xn} f(x1, ..., xn−2, 0, 1) = f(x1, ..., xn−2, 1, 0)

S{xn|xn−1} f(x1, ..., xn−2, 1, 0) = f(x1, ..., xn−2, 1, 1)

S{xn|xn−1} f(x1, ..., xn−2, 0, 0) = f(x1, ..., xn−2, 0, 1)

TABLE II

DEFINITIONS AND NOTATION FOR THE ANTISYMMETRIES OF DEGREE

TWO.

fd is obtained first by replacing each literalxi with xi and
then by complementing the function. A self-dual function is a
function such thatf = fd. There are22n−1

self-dual functions
of n variables.

Let f be a self-dual function ofn variables, and let|f | be
the number of inputsa for which f(a)=1,then |f |=2n−1. A
function which is obtained by assigning a self-dual function
to a variable of a self-dual function is also self-dual.

C. Linearity

Definition 2.2: If a logic functionf is represented as

f = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn

whereai = 0 or 1 thenf is said to be a linear function [9].
It is interesting to note that a linear function is either a self-

dual or self-anti-dual function. The proof is given in [9]. There
are2n+1 linear functions ofn variables, and a linear function
that is obtained by assigning a linear function to an arbitrary
variable of a linear function is also a linear function.

D. Autocorrelation Coefficients

Switching functions can be translated to other domains,
such as the spectral domain. In this paper we consider the
calculation of a function’s autocorrelation coefficients, which
are one possible representation in the spectral domain. The
autocorrelation function is defined as follows [6]:

B f f (τ) =
2n−1∑
v=0

f(v) · f(v ⊕ τ) (1)

The superscriptsf f are generally omitted.
For multiple-output functions a second step must be per-

formed to combine the autocorrelation function for each of
the individual functions into thetotal autocorrelation function;
however, multiple-output functions are not yet considered in
this work.

The above definition forB(τ) assumes that the outputs
of the switching functionf are encoded as{0, 1}. If the
function is alternately encoded as{+1,−1} then the definition
of the autocorrelation function is the same, with the resulting
coefficients being referred to asC(τ).

Work in [7] demonstrated that there are four invariant
operations for the{+1,−1} autocorrelation coefficients. The
invariant operations are as follows:

(i) permutation of any input variablesxi andxj , i, j ∈ 1..n,
i 6= j,

(ii) negation of any input variablexi, i ∈ 1..n,
(iii) negation of the output of the switching function, and
(iv) replacement of any input variablexi with xi⊕ xj , i, j ∈

1..n, i 6= j.

These invariant operations have been used to define classes of
functions, referred to as autocorrelation classes. The reader is
referred to [7] for further details. Table XI lists the autocorre-
lation classes forn ≤ 4.

III. T OTALLY SYMMETRIC FUNCTIONS

Before examining the relationships between totally sym-
metric functions and their autocorrelation coefficients, some
notation is required. There are2n autocorrelation coefficients
for a function ofn inputs. In general, these coefficients are
grouped according to the weight, or the number of ones in
the binary expansion of the valueτ used to compute each
coefficient. This is written|τ |. All coefficients for which
|τ | = 1 are referred to as first order coefficients, second order
coefficients are those for which|τ | = 2 and so on.
τi will henceforth be used to refer to a value whose binary

expansion contains a 1 in theith bit, while the remaining
n − 1 bits in the binary expansion ofτ are 0. Additionally,
τiα will be used to refer to a set of values for which the binary
expansion contains a 1 in theith bit while the remainingn−1
bits have the valueα ∈ {0, ..., 2n−1 − 1}. τ iα refers to a
set of values for which the binary expansion contains a 0 in
the ith bit while the remainingn− 1 bits have the valueα.

Theorem 3.1:If a functionf is totally symmetric or totally
antisymmetric then all{+1,−1} autocorrelation coefficients
for any given order will be equal within the order. This may
be written asC(τ) = C(τ ′) ∀ τ, τ ′ such that|τ | = |τ ′|.

Work in [7] showed that permuting any two variablesj and
k results in exchanging the values of the coefficientsC(τjα)
andC(τkα). Since a function symmetric in two variablesj
and k by definition will not change ifj and k are permuted
then the autocorrelation coefficients will also not change –
the function remains the same. Thus forC(τjα) andC(τkα)
to be exchanged and yet no change to occur, we must have
C(τjα) = C(τkα) . A function that is totally symmetric will
not change for any permutation of its variables, soC(τ1α) =
C(τ2α) = ... = C(τnα), assuming the variables are numbered
from 1 to n. We can express this asC(τ) = C(τ ′) where
|τ | = |τ ′| sinceα can take on any value and the property still
holds.

We note that this implies that there are non-totally- sym-
metric functions with coefficients of this pattern. An example
of this is given below in Section IV. However, such a function
must be in the same autocorrelation class as some totally
symmetric function. We expand upon this in Section IX.

We note also that the above theorem includes totally anti-
symmetric functions. Since the negation of a function does not
affect the{+1,−1} autocorrelation coefficients it is relatively
easy to include anti-symmetries in any discussion of symmetry,
as an anti-symmetry involves only negation of the function or
subfunction in question.
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Fig. 1. The Karnaugh map for a completely symmetric 4-variable Boolean
function .

In terms of the autocorrelation classes, totally symmetric
functions can appear in a number of the classes. Examination
of the 32 possible totally symmetric functions forn = 4 shows
that 8 of the 18 autocorrelation classes forn = 4 (as shown
in the Appendix) contain totally symmetric functions. This
is contrary to what we had expected; preliminary thinking
on this subject had considered the possibility that all totally
symmetric functions would fall into the same autocorrelation
class. However, upon examination (and by brute force) this
is clearly not the case. Consider the a Karnaugh-map for
a four-variable functionf , as shown in Figure 1. Possible
assignments for the letters includea, b, c, d, e = 0, a =
1, b, c, d, e = 0, a, b = 1, c, d, e = 0 and so on. Clearly the
first assignment and second assignment must be in different
autocorrelation classes, as a totally symmetric function with
the first assignment is the trivial functionf(X) = 0 while
the function with the second assignment is a function with
1 true minterm,f(X) = x1x2x3x4. No application of any
of the invariant operations can generate a function with 1 true
minterm from a function that has no true minterms. In fact, this
can be somewhat generalized; the only invariant operation that
can generate a differing number of true minterms in a function
belonging to the same autocorrelation class is that of negating
the function. In this case the resulting function will have2n−k
true minterms,k being the number of original true minterms.
Thus many of the possible totally symmetric functions must
belong to different autocorrelation classes, simply because
they have different values fork.

Examination of then ≤ 4 autocorrelation classes, however,
shows that in some cases there are several classes whose
member functions have the same numbers of true minterms.
For instance, there are 4 distinct classes whose functions each
have 8 true minterms. In this case all totally symmetric func-
tions with 8 true minterms fall into the same autocorrelation
class. The only situation for which this does not occur is the
situation in which there are 6 true minterms. Totally symmetric
functions with 6 true minterms may be generated in three ways
(for n ≤ 4): eitherc = 1 anda, b, d, e = 0, or a, b, e = 1 and
c, d = 0, or a, d, e = 1 and b, c = 0. In one case we have
only a single letter being assigned a 1 while in the other two
cases we have three letters being assigned 1’s. We hypothesize
that the structures thus illustrated are different enough that
no combination of the invariant operations can result in a
transformation from one structure to the other, and thus we
have two unique classes, each whose functions have 6 true
minterms, and each containing one or more totally symmetric
functions. We are continuing to investigate this concept of
a function’s structure, and how it relates to classes and the

autocorrelation coefficients.

IV. PARTIALLY SYMMETRIC FUNCTIONS

Theorem 4.1:If a function f is partially symmetric in a
subset of its input variablesxi, . . . , xim then the autocor-
relation coefficientsC(τj α) will have equal values for all
j ∈ {i, . . . , i+m}.

The same reasoning as used above for Theorem 3.1 can
be used here. Permuting anym variablesi through i + m
results in exchanging the values of the coefficientsC(τiα)
throughC(τ(i+m)α). However, the function does not change,
by definition, and so coefficientsC(τiα) throughC(τ(i+m)α)
must be equal.

For example, the functionf(X) = x1x2x3 +x3x4 +x1x4 +
x2x3 + x1x2 + x1x3 is partially symmetric inx1, x2, x3.
It appears that the productx2x4 is missing, when actually
it is unnecessary as it is covered by the other products.
The autocorrelation coefficients for this function are given in
Table III. Of note are the second order coefficients, which
illustrate the Theorem above.

τ C(τ) τ C(τ) τ C(τ) τ C(τ)
0000 16 0100 4 1000 4 1100 12
0001 4 0101 4 1001 4 1101 4
0010 4 0110 12 1010 12 1110 4
0011 4 0111 4 1011 4 1111 4

TABLE III

THE {+1,−1} AUTOCORRELATION COEFFICIENTS FOR THE PARTIALLY

SYMMETRIC FUNCTION

f(X) = x1x2x3 + x3x4 + x1x4 + x2x3 + x1x2 + x1x3 .

We have also investigated how partially symmetric functions
fall into the autocorrelation classes. However, there are clearly
far more possibilities and a brute force examination is not
possible, even forn ≤ 4. One interesting observation was
made; it appears that all of then ≤ 4 autocorrelation classes
contain functions with partial symmetries on three variables
except class number 15.

V. FUNCTIONS WITH SYMMETRIES OF DEGREETWO

Theorem 5.1:A function f(X) with some type of symme-
try of degree two will have autocorrelation coefficient values
as follows:
E{xi, xj} or N{xi, xj} → C(τiα) = C(τjα)
S{xj |xi} or S{xj |xi} → C(τiα) = C(τijα)
S{xi|xj} or S{xi|xj} → C(τjα) = C(τijα)

Proofs for these are given in [7]. Again, as for partial
symmetries, it appears that all autocorrelation classes contain
functions with symmetries of degree two.

VI. I S IT POSSIBLE TODETERMINE SYMMETRIES FROM

THE AUTOCORRELATIONCOEFFICIENTS?

Hurst et. al. [3] provide tests based on a function’s spectral
coefficients that will ascertain whether or not the function
possesses a particular symmetry. However, as indicated by the
example in Table III, the autocorrelation coefficients cannot be



used in the same way. This can be explained by examining the
spectral symmetry tests, as described in Table IV. The notation
used in this table is as follows:

S0 includes all spectral coefficients that involve neither
of xi or xj ,
S1 includes all spectral coefficients that involvexi but
not xj ,
S2 includes all spectral coefficients that involvexj but
not xi, and
S3 includes all spectral coefficients that involve bothxi
andxj .

the spectral coefficients are computed using

Tn · Y = S. (2)

For example, for an = 3 Boolean function,

T
n

=



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


,

Y is the output vector of the function, for example

Y =



1
−1
−1

1
1
1
1
−1



y0
y1
y2
y3
y4
y5
y6
y7,

andS is the resulting spectral coefficients. Using the sample
function from above, the coefficients would be

S =



2
2
2
2
−2
−2
−2

6



s0
s1
s2
s12
s3
s13
s23
s123.

Examination of the spectral symmetry tests for three variables

Symmetry Test
S{xn−1|xn} S1 + S3 = 0
S{xn|xn−1} S2 + S3 = 0
E{xn, xn−1} S1 + S2 = 0
N{xn, xn−1} S1 − S2 = 0
S{xn|xn−1} S2 − S3 = 0
S{xn−1|xn} S1 − S3 = 0

TABLE IV

SPECTRAL SYMMETRY TESTS FOR SYMMETRIES IN{xn−1, xn}

illustrates that if [
s2

s12

]
=
[
s3

s13

]
then the function must possessN{x2, x3}. Similarly, if[

s2

s12

]
=
[
−s3

−s13

]

then the function must possessE{x2, x3}. The notation used
here for labeling of coefficients is as illustrated in the example
above.

In the autocorrelation coefficients, this distinction is lost.
This brings to question the following situation. If[

s2

s12

]
=
[
−s3

s13

]
then the autocorrelation coefficients will still be equal; how-
ever, the symmetries do not exist. The same holds true if
s2 = s3 and s12 = −s13. Therefore it is not possible to
determine if a function has a particular equivalence, nonequiv-
alence or single variable symmetry solely by examining the
autocorrelation coefficients. The same holds true for totally
and partially symmetric functions.

VII. SELF-DUAL FUNCTIONS

Theorem 7.1:A function will haveC(2n − 1) = −2n if
and only if it is a self-dual function. Similarly, a function will
haveC(2n − 1) = 2n if and only if it is a self-dual function.

If a function is self-dual, then by definition

f(X) = f(X),

which can be rewritten as

f(X) = f(X ⊕ 2n − 1).

Using {+1,−1} notationf(X) · f(X) = −1. Thus

C(2n − 1) =
2n−1∑
v=0

f(v) · f(v ⊕ 2n − 1) by defn

=
2n−1∑
v=0

f(v) · f(v)

= −2n.

Similarly, for self-anti-dual functions, by definition

f(X) = f(X),

which can be rewritten

f(X) = f(X ⊕ 2n − 1)

and so

C(2n − 1) =
2n−1∑
v=0

f(v) · f(v ⊕ 2n − 1) by defn

=
2n−1∑
v=0

f(v) · f(v)

= 2n.

If C(2n − 1) = −2n then every pair of mintermsf(v) and
f(v⊕2n−1) in the summation

∑2n−1
v=0 f(v)·f(v⊕2n−1) must

result in a−1 when multiplied and thus must have inverse
values of each other. So

f(v) = f(v ⊕ 2n − 1),

or,
f(v) = f(v),



which is the definition of a self-dual function.
Similarly, if C(2n − 1) = 2n then every pair of minterms

f(v) andf(v⊕2n−1) in the summation
∑2n−1
v=0 f(v) ·f(v⊕

2n−1) must result in a1 when multiplied and thus must have
identical values. So

f(v) = f(v ⊕ 2n − 1),

or,
f(v) = f(v),

which is the definition of a self-anti-dual function.

VIII. L INEAR FUNCTIONS

Theorem 8.1:A function is linear if and only if all of its
coefficientsC(τ) = −2n, such that the weight ofτ |τ | = 1.

This theorem comes from work in [7] in which the following
theorem is proven:

Theorem 8.2:C(τi) = −2n if and only if f(X) has a
decomposition

f(X) = f∗(X)⊕ xi

such thatf∗(X) is independent ofxi and τi has the binary
expansion consisting of a1 in positioni and zeroes in all other
positions.

We extend this theorem further to specify that if ALL values
of τ with a single one in the binary expansion result inC(τ) =
−2n then the function must be decomposable for all variables
in the fashion described above.

IX. D ISCUSSION ANDFUTURE WORK

As noted in Sections III and IV, identifying where a function
has equal coefficients within a given order, or in a subset of
that order, is not sufficient to identify a symmetric function.
However, a function that does not have a symmetry but whose
autocorrelation coefficients reflect this property must be in the
same class as some totally/partially symmetric function. Thus
it may be possible to identify the necessary operations to apply
in order to transform the subject function into a some type
of symmetric function, thus making it possible to leverage
the advantages inherent in symmetries during the optimization
or other processing of the subject function. Future work will
address tools to make this determination.

Additionally, Section III also discusses the possiblity that
two functions which are each totally symmetric may be
grouped into two different autocorrelation classes. This implies
a significant difference in their underlying structures. Without
applying all possible combinations of the invariant operations
it can be impossible to determine whether or not two functions
will be grouped into the same class. Thus we are investigating
this analysis of the structure of a function, to attempt to find
a fast determination of whether two functions are in the same
autocorrelation class. This could then be extended to other
classification schemes.

A comment on the suitability of the autocorrelation trans-
form as an analysis tool is appropriate; the authors have found
that properties defined on the outputs of a function are better
suited to analysis with autocorrelation coefficients than are

properties defined based on the structure of a function. For
instance, the properties of self-duality and self-anti-duality
lend themselves very nicely to identification through auto-
correlation coefficients, while on the other hand monotone
functions are much more difficult to identify.

X. CONCLUSION

There are many existing techniques for the identification
of properties such as symmetries, including [10], [11] and
[2]. Rather than competing with these, this paper concentrates
instead on the theoretical aspects of the autocorrelation trans-
form as an analysis tool. We can conclude from this work
that the autocorrelation transform can identify if a function
does not possess a symmetry, but that the autocorrelation
coefficients resulting from the transform do not provide a
sufficient condition for the existence of symmetries. Ongoing
work in this area includes implementation of our technique
in order that we may compare it with existing techniques as
mentioned above, as well as the various directions described
in Section IX. An extension of the analysis led to necessary
and sufficient conditions for the identification of self-dual/self-
anti-dual and linear functions. Future work will include imple-
mentations for these properties as well.
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XI. A PPENDIX

class no.
1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

f(X) = 0
2 16 16 16 16 -16 16 16 -16 16 -16 -16 -16 -16 -16 16 -16

f(X) = x4
3 16 16 16 0 0 16 0 0 0 0 0 0 0 0 0 0

f(X) = x3x4
4 16 16 0 0 0 0 0 0 0 0 0 -16 0 0 0 -16

f(X) = x1x2 + x2x4 + x2x3
5 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8

f(X) = x2x3x4
6 16 16 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -8

f(X) = x3x4 + x2x4
7 16 12 12 12 -12 12 12 -12 12 -12 -12 -12 -12 -12 12 -12

f(X) = x1x2 + x1x3 + x1x4
8 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

f(X) = x1x2x3x4
9 16 12 12 4 4 12 4 4 4 4 4 4 4 4 4 4

f(X) = x2x3x4 + x1x3x4
10 16 12 12 4 -4 12 4 -4 4 -4 -4 -4 -4 -4 4 -4

f(X) = x1x2x4 + x3x4
11 16 12 4 4 -4 4 4 -4 4 -4 -4 -12 -4 -4 4 -12

f(X) = x1x2x3 + x3x4 + x2x4
12 16 8 8 8 0 0 8 0 8 0 0 0 0 0 8 0

f(X) = x2x3x4 + x1x3x4 + x1x2x4
13 16 8 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -16

f(X) = x1x2x3 + x3x4 + x2x4 + x1x4
14 16 8 8 0 0 8 0 0 0 0 0 -8 -8 0 0 -8

f(X) = x3x4 + x1x2x4 + x1x2x3
15 16 8 8 0 0 0 0 0 0 0 -8 -8 -8 0 0 -8

f(X) = x2x3 + x1x4 + x3x4
16 16 4 4 4 4 4 4 -4 -4 4 -4 -4 -4 4 4 4

f(X) = x2x3x4 + x1x3x4 + x1x2x4 + x1x2x3
17 16 4 4 4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4

f(X) = x2x3 + x1x4
18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f(X) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 0111 1011 1101 1110 1111τ

TABLE V

THE n ≤ 4 AUTOCORRELATION CLASSES AND THEIR UNDERLYING FUNCTIONS.


