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Abstract—The ability to identify special properties such as is said to be totally symmetric if the output is unchanged by
symmetries, linearity, or duality in Boolean logic functions is very any permutation of the inputs to the function. For example,

useful in many aspects of logic synthesis. Another tool whose use - ; _ ; ;
have lately been introduced for logic synthesis and cIassiﬁcationsthe.majorlty functionf = z; + x5 + x5 s totally symmetric,
as is the functionf = x125 + xox3 + T123.

applications is the autocorrelation transform. This paper details . 2 .
the connections between the autocorrelation coefficients and the A Slightly less restrictive form of symmetry is that of
existence of these special properties. partial symmetry. A Boolean function is said to be partially

| INTRODUCTION symmetric, or possess a pf_;lrtlal symmetry if the output is
] ) o unchanged by any permutation of some subset of the inputs
Symmetry is a very useful property to identify in BooleaRy the function.
functions. Partial symmetries exist in most Boolean functions, a third type of symmetry is a symmetry of degree two. This
part?cularly those used in_practical applications. Bo_th total arpga partial symmetry in which two subfunctions of the original
partial symmetry properties are commonly used in synthesgigction are identical and also are independent of two of the

of digital circuits and in particular in the reduction of theynction's variables. Symmetries of degree two are identified
size of Binary Decision Diagram (BDD) representations qfy finding patterns where

functions [1], [2]. It is also useful to identify if a function is
dual, self-dual or linear. flx1,cnay by xy) = fx1, 0,6y dy oy ),

Another technique often used in logic synthesis is thatb c,d € {0,1}. Equivalence (E), non-equivalence (N) and
of applying a mathematical transform to a logic function tgingle-variable (S) symmetries as defined by Hetstal. [3]
determine a series of coefficients. Transforms such as the all types of symmetries of degree two, and are defined in
Hadamard and Walsh and their applications in digital logiTable I. Without loss of generality these definitions label the
are well researched [3]. Another transform known as the awwvo variables of interest as andn — 1.
tocorrelation transform is less well-known. The autocorrelation

transform has been demonstrated to be of use in areas sucéymmetry Definition

. . . .. . . IE Tn— 7xn x 7---,xn7 7070
as variable ordering for Binary Decision Diagrams [4] and in N{{x",ll,mn}j f(xl “_7%7;0’ 1

)
f( )
computing the estimat€’(f) of a function’s complexity [5], SHxn|Tn-1}  f(x1,...,Tn—2,1,0)
[6]. In addition, recent work [7] has used the autocorrelation S{zx|Zn-1}  f(z1,...,Zn-2,0,0)

f(mla vy Tn—2, 1? 1)
f(xlv ey Tp—2, 170)
f(mla vy Tn—2, 17 1)
f(.’l?l, ey L —2, 07 1)

coefficients in classification of Boolean functions. If one is TABLE |
to use the autocorrelation coefficients for one of these otheperiniTioNs AND NOTATION FOR EQUIVALENCE NON-EQUIVALENCE,
uses, it seems logical to make use of them in as many ways AND SINGLE-VARIABLE SYMMETRIES.

as possible. Thus, this paper discusses how the autocorrelation
coefficients are affected by symmetries and other special

properties of switching functions, and how this knowledge A more recently introduced symmetry has been termed
may be utilized. antisymmetrieg8]. An antisymmetry occurs when permuting

all or a subset of variables results in the exact inverse of the

Il. BACKGROUND original function. This can also be extended to the symmetries
We first present some notation and background. of degree two, as given in Table II.
A. Symmetries B. Self-Duality
There are a number of different types of symmetries. We Definition 2.1: The dual of a functionf(x1, x2,...,x,) is

begin with the most restrictive symmetry. A Boolean functiotf (Z,, Z», . .., T,,) and is denoted by? [9].



Antisymmetry  Definition
E{xn_l,l‘n} f(Il,...,l’n_Q,O, 0) f( )
]_V{xnfl,xn} fz1, .oy xn—2,0,1) = f( . )
S{zn|Tn-1} f(x1, .y ®n2,1,0) = f(z1, ..., Tn-2,1,1)
b ) = f( )

E{Q)‘an_l} Ti, .oy Tp—2,0,0

(i) negation of any input variable;, i € 1..n,

(iii) negation of the output of the switching function, and

(iv) replacement of any input variablg with «; ® x5, 4,j €
L.n, i#j.

These invariant operations have been used to define classes of

TABLE Il ) ) .
functions, referred to as autocorrelation classes. The reader is
DEFINITIONS AND NOTATION FOR THE ANTISYMMETRIES OF DEGREE . .
wo referred to [7] for further details. Table Xl lists the autocorre-

lation classes fon < 4.

[1l. TOTALLY SYMMETRIC FUNCTIONS
f¢ is obtained first by replacing each litera) with z; and
then by complementing the function. A self-dual function is
function such thaf = <. There are2” " self-dual functions
of n variables.

Before examining the relationships between totally sym-
fhetric functions and their autocorrelation coefficients, some
notation is required. There aB¥ autocorrelation coefficients
) ) for a function ofn inputs. In general, these coefficients are

Let f be a self-dual function of variables, and Ietfl\ be  grouped according to the weight, or the number of ones in
the number of inputs: for which f(a)=1,then|f[=2""". A he hinary expansion of the value used to compute each
funct|on' which is obtained by assigning a self-dual fur‘C“Of:'oefficient. This is written|r|. All coefficients for which
to a variable of a self-dual function is also self-dual. |7| = 1 are referred to as first order coefficients, second order
C. Linearity coefficients are those for whigh| = 2 and so on.

7, Will henceforth be used to refer to a value whose binary
expansion contains a 1 in thé&" bit, while the remaining
f=ag®arr1 ®asxo ® - D anty n — 1 bits in the binary expansion af are 0. Additionally,

T;o Will be used to refer to a set of values for which the binary

wherea; =0 or 1 then f is said to be a linear function [9). gy ansjon contains a 1 in thi#é bit while the remaining: — 1
Itis interesting to note that a linear function is either a selfsiis have the valuer ¢ {0,..,2"=1 —1}. 7~ refers to a
e T3

dual or self-anti-dual function. The proof is given in [9]. Thergq; of values for which the binary expansion contains a 0 in
are2™*! linear functions ofn variables, and a linear functionthe it bit while the remaining: — 1 bits have the value.

that is obtained by assigning a linear function to an arbitrary-l-heorem 3.1:If a function f is totally symmetric or totally

variable of a linear function is also a linear function. antisymmetric then alf{+1, —1} autocorrelation coefficients
D. Autocorrelation Coefficients for any given order will be equal within the order. This may
be written asC/(7) = C(7') V 7,7’ such thatr| = |7/|.

Switching functions can be translated to other domains,W Kin 171sh d that i i iableand
such as the spectral domain. In this paper we consider tﬁe orkin [7] showed that permuting any two variablean
c

calculation of a function’s autocorrelation coefficients, whi res(/:JIts N eSx.changn;g tr]f values oftthe'cott\ehil‘f|C|eﬁ.(s%T).

are one possible representation in the spectral domain. ﬁ[bd (Tka). >ihce a tunction Symmetric in two variabigs

autocorrelation function is defined as follows [6]: and & by definition will not change ifj and & are permuted
then the autocorrelation coefficients will also not change —

Definition 2.2: If a logic function f is represented as

iy 21 the function remains the same. Thus @(7;,) and C(7ya)
B7(r) = Z f)- floer) @) to be exchanged and yet no change to occur, we must have
v=0 C(Tja) = C(Tka) - A function that is totally symmetric will
The superscriptg f are generally omitted. not change for any permutation of its variables,(3@1,) =
For multiple-output functions a second step must be peafyr,,) = ... = C(7,4), assuming the variables are numbered

formed to combine the autocorrelation function for each d¢fom 1 to n. We can express this as(r) = C(7’) where
the individual functions into theotal autocorrelation function  |7| = |7/| sincea can take on any value and the property still
however, multiple-output functions are not yet considered hplds.
this work. We note that this implies that there are non-totally- sym-
The above definition forB(r) assumes that the outputsmetric functions with coefficients of this pattern. An example
of the switching functionf are encoded ag0,1}. If the of this is given below in Section IV. However, such a function
function is alternately encoded &s-1, —1} then the definition must be in the same autocorrelation class as some totally
of the autocorrelation function is the same, with the resulting/mmetric function. We expand upon this in Section IX.
coefficients being referred to &s(r). We note also that the above theorem includes totally anti-
Work in [7] demonstrated that there are four invariardymmetric functions. Since the negation of a function does not
operations for the+1, —1} autocorrelation coefficients. Theaffect the{+1, —1} autocorrelation coefficients it is relatively
invariant operations are as follows: easy to include anti-symmetries in any discussion of symmetry,
(i) permutation of any input variables andz;, i,j € 1..n, as an anti-symmetry involves only negation of the function or
i# 7, subfunction in question.
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00|a|b|c|b autocorrelation coefficients.
(1)1 b 2 d 2 IV. PARTIALLY SYMMETRIC FUNCTIONS
10 z c 2 c Theorem 4.1:If a function f is partially symmetric in a

subset of its input variables;,...,z,;  then the autocor-
will have equal values for all

Fig. 1. The Karnaugh map for a completely symmetric 4-variable Boolee{ﬁlatlon CoeﬁICIentSC(TJ a)
function . J €{iy...,i+m}.
The same reasoning as used above for Theorem 3.1 can
In terms of the autocorrelation classes, totally symmetrRe used here. Permuting amy variablesi throughi + m
functions can appear in a number of the classes. Examinat/§§ults in exchanging the values of the coefficieOtsr;. )
of the 32 possible totally symmetric functions for= 4 shows throughC(7(;1m)q). However, the function does not change,
that 8 of the 18 autocorrelation classes for= 4 (as shown Py definition, and so coefficients(ricr) throughC (7(;+m)a)
in the Appendix) contain totally symmetric functions. Thignust be equal.
is contrary to what we had expected; preliminary thinking FOr example, the functiofi(X) = 717,73 +Tsx4 +T174+
on this subject had considered the possibility that all totalfjg®s + 122 + z123 is partially symmetric inzy, zz, 3.
symmetric functions would fall into the same autocorrelatioly @Ppears that the produatz4 is missing, when actually
class. However, upon examination (and by brute force) tHlsiS unnecessary as it is covered by the other products.
is clearly not the case. Consider the a Karnaugh-map fbpe autocorrelation coefficients for this function are given in
a four-variable functionf, as shown in Figure 1. PossibleTable lll. Of note are the second order coefficients, which
assignments for the letters includeb,c,d,e = 0, a = Illustrate the Theorem above.
1,b,¢,d,e = 0, a,b = 1,¢,d,e = 0 and so on. Clearly the - o) | T ()| 7 o | ot C
4
4

—~
B

)

first assignment and second assignment must be in differengggg 0100 1000 4 [ 1100
autocorrelation classes, as a totally symmetric function with0001 0101 1001 4 | 1101
the first assignment is the trivial functioi( X) = 0 while 0010 0110 12 | 1010 12 | 1110
the function with the second assignment is a function with 0011 0111 4 | 1011 4 |11
1 true minterm,f(X) = T172ZT3T4. NO application of any TABLE Il

of.the invariant opergtions can generate a.function with 1 trt.u;HE {41, —1} AUTOCORRELATION COEFFICIENTS FOR THE PARTIALLY
minterm from a function that has no true minterms. In fact, this SYMMETRIC FUNCTION

can be somewhat generalized; the only invariant operation that
can generate a differing number of true minterms in a function
belonging to the same autocorrelation class is that of negating

:?feflﬂiztggprhlsnkt@;gastiéhsur;iﬂ?r;% Lu“nclggln t\:lljllcla r:ﬁ!i;nstefms We have also investigated how partially symmetric functions
g gina . T:i\ll into the autocorrelation classes. However, there are clearly

Thus many of the possible totally symmetric functions mus N NSV

ar more possibilities and a brute force examination is not

belong to different autocorrelation classes, simply because_ . ; ; .
. possible, even fom < 4. One interesting observation was
they have different values fa.

L . made; it appears that all of the < 4 autocorrelation classes
Examination of the: < 4 autocorrelation classes, however PP -

. tontain functions with partial symmetries on three variables
shows that in some cases there are several classes whgse

: i except class number 15.
member functions have the same numbers of true minterms.

For instance, there are 4 distinct classes whose functions eacllV. FUNCTIONS WITH SYMMETRIES OF DEGREETWO

have 8 true minterms. In this case all totally symmetric func- Theorem 5.1:A function £(X) with some type of symme-

tions with 8 true minterms fall into the same autocorrelatiofy of degree two will have autocorrelation coefficient values
class. The only situation for which this does not occur is thgs follows:

situation in which there are 6 true minterms. Totally symmetrig (.. z;} of N{zs,z;} — C(7ia) = C(Tja)
functions with 6 true minterms may be generated in three Ways |z, } or S{x;|Z;} — C(7ia) — C(Tija)
(for n < 4): eitherc =1 anda,b,d,e =0, ora,b,e =1 and S{xila;} or S{xi|Z;} — C(Tja) = C(Tija)
¢,d =0, 0rade=1andbc=0.Inone case we have proofs for these are given in [7]. Again, as for partial

only a single letter being assigned a 1 while in the other Wgmmetries, it appears that all autocorrelation classes contain
cases we have three letters being assigned 1's. We hypothegigRtions with symmetries of degree two.

that the structures thus illustrated are different enough that

no combination of the invariant operations can result in aV!- I'S IT POSSIBLE TODETERMINE SYMMETRIES FROM
transformation from one structure to the other, and thus we THE AUTOCORRELATION COEFFICIENTS?

have two unique classes, each whose functions have 6 truélurstet. al.[3] provide tests based on a function’s spectral
minterms, and each containing one or more totally symmetdoefficients that will ascertain whether or not the function
functions. We are continuing to investigate this concept pbssesses a particular symmetry. However, as indicated by the
a function’s structure, and how it relates to classes and teeample in Table Ill, the autocorrelation coefficients cannot be

[=Y
Al
NS

X) = T1T2T3 + Taxq + T124 + 223 + T122 + T123.



used in the same way. This can be explained by examining then the function must possegq x», z3}. The notation used
spectral symmetry tests, as described in Table IV. The notatioere for labeling of coefficients is as illustrated in the example

used in this table is as follows:

above.

5% includes all spectral coefficients that involve neither In the autocorrelation coefficients, this distinction is lost.

of z; or z;,

ST includes all spectral coefficients that involwg but
not Zj,

52 includes all spectral coefficients that involve but
not z;, and

53 includes all spectral coefficients that involve bath
andz;.

the spectral coefficients are computed using

™ .Y =25
For example, for a» = 3 Boolean function,

@)

™ =

e e
|
[
|
_
[
[
|
[
|
[
[

1 Yo
-1 Y1
-1 Y2
— 1 Y3
Y= 1 Ya
1 Ys
1 Y6
-1 Y7,

and S is the resulting spectral coefficients. Using the sample

function from above, the coefficients would be

2 S0
2 S1
2 So
2 S12
8= —2 83
—2 S13
-2 523
6 $123-

This brings to question the following situation. If

=]

then the autocorrelation coefficients will still be equal; how-
ever, the symmetries do not exist. The same holds true if
sy = s3 and s;o = —s13. Therefore it is not possible to
determine if a function has a particular equivalence, nonequiv-
alence or single variable symmetry solely by examining the
autocorrelation coefficients. The same holds true for totally
and partially symmetric functions.

VIl. SELF-DUAL FUNCTIONS

Theorem 7.1:A function will have C(2" — 1) = —2" if
and only if it is a self-dual function. Similarly, a function will
haveC(2" — 1) = 2™ if and only if it is a self-dual function.

If a function is self-dual, then by definition

F(X) = f(X),

which can be rewritten as

f(X)=f(X®2"-1).

Using {+1,—1} notation f(X) - f(X) = —1. Thus

2" —1
C@2'—1) => f(v): f(v®2" 1) by defn
0
= > f)-Fv)
v=0
= -2,
Similarly, for self-anti-dual functions, by definition
F(X) = f(X),

Examination of the spectral symmetry tests for three variabledich can be rewritten

Symmetry Test
S{zn_1|Tn} ST+S53=0
S{xn|Tr-1} S2+S83=0
E{xp,zn-1} S'+5%2=0
N{zp,xn-1} S'—82=0
S{zn|Tn-1} S2_583=0
S{zn_1]zn} Sl_g3=0

TABLE IV

SPECTRAL SYMMETRY TESTS FOR SYMMETRIES Il‘{ccn_l,ccn}

illustrates that if

=]

then the function must possed&{z,, x5}. Similarly, if

=)= ]

fX)=fXe2"-1)

and so
2" —1
C@2"—1) => f(v): f(v@2" —1) by defn
o)
= f()- f(v)
v=0
=27,

If C(2™ —1) = —2™ then every pair of mintermg(v) and
f(v®27—1) in the summatio 2", " f(v)- f(v®2"—1) must
result in a—1 when multiplied and thus must have inverse
values of each other. So

f)=Ffue2" -1,

fl) = f(@),



which is the definition of a self-dual function. properties defined based on the structure of a function. For
Similarly, if C'(2™ — 1) = 2™ then every pair of minterms instance, the properties of self-duality and self-anti-duality

f(v) and f(v® 2™ —1) in the summatior]zilgl f(v)-f(ve lend themselves very nicely to identification through auto-

2™ —1) must result in @ when multiplied and thus must havecorrelation coefficients, while on the other hand monotone

identical values. So functions are much more difficult to identify.
flo)=flve2" -1),
of, X. CONCLUSION
f(v) = f(@),
which is the definition of a self-anti-dual function. There are many existing techniques for the identification
of properties such as symmetries, including [10], [11] and
VIII. L INEAR FUNCTIONS [2]. Rather than competing with these, this paper concentrates

Theorem 8.1:A function is linear if and only if all of its instead on the theoretical aspects of the autocorrelation trans-
coefficientsC(7) = —2, such that the weight of |7| = 1. form as an analysis tool. We can conclude from this work
This theorem comes from work in [7] in which the followingthat the autocorrelation transform can identify if a function

theorem is proven: does not possess a symmetry, but that the autocorrelation
Theorem 8.2:C(1;) = —2" if and only if f(X) has a coefficients resulting from the transform do not provide a
decomposition sufficient condition for the existence of symmetries. Ongoing
f(X) = (X)) ® work in this area includes implementation of our technique

. o ) in order that we may compare it with existing techniques as
such thatf*(X) is independent of:; and 7; has the binary ontioned above, as well as the various directions described
expansion consisting of ain positioni and zeroes in all other ;, saction IX. An extension of the analysis led to necessary

positions. _ _ _ and sufficient conditions for the identification of self-dual/self-
We extend this theorem further to specify that if ALL value§ i qual and linear functions. Future work will include imple-

of 7 with a single one in the binary expansion resullitr) =  yantations for these properties as well.

—2™ then the function must be decomposable for all variables

in the fashion described above.
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XI. APPENDIX

class no.

1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
F(X) =0

2 16 16 16 16 -16 16 16 -16 16 -16 -16 -16 -16 -16 16 -16
f(X) =4

3 16 16 16 0 0 16 0 0 0 0 0 0 0 0 0 0
F(X) = 2324

4 16 16 0 0 0 0 0 0 0 0 0 -16 0 0 0 -16
f(X) =z122 + Tawg + T223

5 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8
f(X) = T2x3T4

6 16 16 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -8
f(X) = x3T4 + T2T4

7 16 12 12 12 -12 12 12 -12 12 -12 -12 -12 -12 -12 12 -12
f(X)=z122 + T123 + 124

8 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
f(X) =z1z20324

9 16 12 12 4 4 12 4 4 4 4 4 4 4 4 4 4
f(X) = zow3xa + x12324

10 16 12 12 4 -4 12 4 -4 4 -4 -4 -4 -4 -4 4 -4
f(X) =z12204 + 324

11 16 12 4 4 -4 4 4 -4 4 -4 -4 -12 -4 -4 4 -12
f(X) = zimomy + w34 + To24

12 16 8 8 8 0 0 8 0 8 0 0 0 0 0 8 0
f(X) = zaz3ms + 12304 + T1T274

13 16 8 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -16
f(X) = x12003 + w324 + T224 + T124

14 16 8 8 0 0 8 0 0 0 0 0 -8 -8 0 0 -8
f(X) =z324 + z12224 + T1T223

15 16 8 8 0 0 0 0 0 0 0 -8 -8 -8 0 0 -8
f(X) =zox3 + 124 + T34

16 16 4 4 4 4 4 4 -4 -4 4 -4 -4 -4 4 4 4
f(X) =zoz3xs + T12324 + T1X2T4 + T1T2T3

17 16 4 4 4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4
f(X) = xox3 + xT1X4

18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f(X) =T1zow3 + 1T2w4 + 1T3T4 + T2T3T4

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 0111 1011 1101 1110 1111

TABLE V
THEn < 4 AUTOCORRELATION CLASSES AND THEIR UNDERLYING FUNCTIONS



