
Report 1 Study Leave 2012
Sociolinguistics in Programming: Background Material

TR-CSJR2-2012

1 Introduction

This report introduces the background and motivation for the research
project “Sociolinguistics in Programming”. Brief overviews of the relevant
areas are provided, with emphasis on areas of relevance to this project. I
also attempt to expand on connections between existing work in these areas
and the work that I am proposing. Data collection and analysis is currently
underway, and future reports will provide in-depth literature reviews and
address methodologies and results.

2 Motivation

The initial motivation for this work was based on anecdotal evidence that
different people programmed differently. While a long discussion can be
held regarding the process of programming1, what this research focuses on
is the final product, or the result of the programming activity. How can
two programs that have the same end result, or functionality, look so differ-
ent? Are there aspects of these differences that are to be encouraged, (i.e.
in students), or discouraged, and why? And finally, are there cultural or
sociological reasons behind why a particular person’s programming activity
might result in a particular style being used? This report explores the rea-
sons and background behind these questions and provides some discussion
as to why it is interesting to ask them.

1The reader is directed to [1] for more information on work in this area.

1

3 Research Questions

Before delving further into this report it is important to put it into context.
The project described by this report is attempting to answer the following
research questions:

• do sociological factors such as gender, experience, or first language
spoken play a role in how people write computer programs?

• if so what characteristics seem to be associated with these factors?

• if not, why not?

This is the initial phase of this work, and thus the questions may evolve
in the future; however it is these questions that are the driving focus for
the current project. In particular I am interested in whether there are
differences in programs written by people of different genders, and if so how
those differences might be characterised.

4 Sociolinguistics

Not being a linguist by training I am struggling with the concept of soci-
olinguistics. Thus for my own benefit and that of the reader of this report
I provide some background on the areas of linguistics and sociolinguistics,
and then discuss how ties to this project.

[2] defines a society as “any group of people who are drawn together for
a certain purpose or purposes”, and a language as “what the members of
a particular society speak”. These two definitions can easily be applied to
the community of computer programmers; indeed the term ”community of
programmers” is already in common use, suggesting that within such com-
munity there is a society and thus a language in use. Of course when we
refer to the language within a society we are generally referring to a natural
language, and various studies such as [3] and [4] are looking at ways in which
natural language is used in this society. This project, however, is examining
how people use artificial languages; that is, programming languages. While
it may not be obvious to a novice programmer, an experienced programmer
is very well aware that when they are writing a computer program they are
communicating not only with the computer, but also with other people who
might need to read and understand their code. Thus my project is investi-
gating the use of programming languages within the society, or community,
of computer programmer.

2

There are many interesting technical terms that are used by linguists in
reference to natural languages, but have interesting connotations when ap-
plied to artificial languages. For instance, Chomsky discussed the difference
between competence and performance of a language, and [2] introduces these
concepts in Chomsky’s own words which I will paraphrase: performance is
the use of the lanugage, while competence describes what speakers know
about their language. From my own experience I would say I can perform
the English language quite well; however my competence in the language
is probably less than expert. In teaching programming, however, we can
usually characterize a first or second-year programming student as having
the opposite knowledge; that is, they generally have knowledge about the
language, but are not good at performing it.

[2] goes on to discuss relationships between language and society. One
such relationship is that social structure may either influence or determine
linguistic structure and/or behaviour; for instance, age-grading refers to the
phenomenon in which young children speak differently from older children,
who in turn speak differently from adults. Another view, however, is that
linguistic structure and/or behaviour may influence social structure; thus
the language itself shapes the person; and yet another view is that both are
taking place at the same time. The fourth relationship possibility is that
there is no relationship between language and society. [2] cites Gumperz2,
in stating that “sociolinguistics is an attempt to find correlations between
social structure and linguistic structure...”

Sociolinguists refer to the differences in how people use language in dif-
ferent ways. For instance, the English language may be said to have many
varieties, such as Oxford English, Cockney English, Canadian English or
legalese. The term variety seems to be hard to define; however I won’t
worry about it in this report as it is not relevant for this research. Similarly
so for the term dialect, which generally is used to refer to one particular
use of a given language, when such language is actually a group of related
normal uses of that language [2]. This research isn’t concerned with these
distinctions because computer languages must be understood by compilers
and interpreters – software that converts programs into machine language
for the computer to executed. Thus for each programing language the di-
alect and variety is strictly controlled. That is, if a programmer tried to use
a word that he or she had invented a new use for, the program that it was
used in would simply not work and would have to be corrected before the
computer could execute it.

2Gumperz, J. J. (1971), Language in Social Groups, Standford University Press p. 223

3

Style, however, is relevant to this work. I interpret style to mean some
correct use of the language, but a use that is specific to the individual
speaker, or a particular group of speakers. In natural language this could
mean a preference for a particular dialect; in programming this could refer
to how words are spaced, or how the program is organized, as long as the
program will execute.

Another interesting topic is that of code-selection, and code-switching. If
a person understands and is fluent in many programming languages, and how
might they employ code-selection and code-switching in their development of
a solution? Would this wider choice of solutions, or style of solution maybe,
be reflected in their final program? This is beyond the scope of this work,
however, and so the reader is directed to [2] ch. 4 for further explanation of
these terms from the sociolinguistics point of view.

As this research is concerned with language and culture, I touch on some
of these aspects here. One area of interest is the Whorfian hypothesis, in
which Benjamin Lee Whorf suggested that the structure of a language deter-
mines the way in which the speakers of that language view the world [2]. Can
the same hold true in programming? As will be discussed in Section 8.4.1
there are a variety of programming languages, some of which exhibit sig-
nificantly different characteristics. Problem-solving can be approached in
very different ways, depending on the language you are using to write the
software solution. Thus would a programmer trained to write programs in
an imperative language approach problems differently than a programmer
trained in functional languages? Although it may be difficult to collect data
on this, this is one area of interest encompassed by this project.

5 Gender and Language

Men and women use language differently; this is argued in a variety of dif-
ferent ways by the authors references in this section. Research into language
is now approached somewhat differently, however, and rather than implying
that because one is a man/woman one must speak and/or write in a particu-
lar way, many researchers in this area are now leaning more towards critical
discourse analysis that is, in the words of Talbot, “committed to examining
the way language contributes to social reproduction and social change.” [5]
(p. 149). Such analysese examine how people use language as they are
“doing” gender. For example, a woman who works in an engineering field
outside of the home might, in the course of her engineering work, use lan-
guage in such a way that lends itself to fitting in with her primarily male

4

colleagues and to asserting domination in her field; this would generally be
labeled as “masculine” characteristics. Conversely, that same woman might
then also be a mother, using nurturing and encouraging language, language
that might be labeled as having “feminine” characteristics.

In addition, Kendall states that “Women and men actively choose ways
of framing to accomplish specific ends within particular interaction. These
choices are drawn, in part, from sociocultural norms for how women and
men are expected to accomplish such actions...” [6] (p. 82), and it is this
frame of mind that I wish to maintain as I moved forward through this
investigation.

There is huge variety in how researchers have approached this area, rang-
ing from qualitative to quantitative works; sociological approaches, feminist
approaches, skeptical approaches and combinations of these and many oth-
ers. Future works stemming from this project will no doubt address this
area in more depth; however in this report I attempt to extract from the
literature a smattering of relevant works to provide support and direction
for this work. I am, of course, aware that at this point I have only just
scratched the surface of this work, and works such as [7], [8], [9], and [10]
are recommended to the reader as a start in this area.

5.1 Female and Male: intercultural differences

“The Way Women Write” by Mary Hiatt [11] presents one of the first inves-
tigations into whether women and men used different styles in their writing.
Hiatt asked a number of questions including:

If there exist a masculine style and a feminine style, in what
ways are they distinct? How do they differ? Do women write
less well than men? ... And how is a judgment to be made?

(p. 2). As she goes on to note, critics’ “judgment” of style tended to reflect
gender regardless of the actual writing, but based almost solely on the au-
thor’s name and thus perceived gender. Hiatt’s work addresses a study based
on a selection of 100 books, and utilised 2000 words from each book which
were painstakingly typed onto punchcards in order that computer analy-
sis could be performed – possibly one of the earliest examples of corpus
techniques for this purpose? I think it is worth noting that the researcher
taught herself SNOBOL in order to develop the software for this analysis.
Her findings were indeed that women write differently than men in a variety
of different ways. Some criticism might be given of this work, in that by
demonstrating these differences Hiatt is actually giving validity to the male

5

critics who posited these differences in the first place; however it is an inter-
esting place to start, and the study provides a first, as far as I am aware, in
this corpus-based approach to analysis of style from a sociolinguistics point
of view.

In other work in this vein, Mulvaney writes that “Communicative prac-
tices not only reflect notions about gender, but they also create cultural con-
cepts of gender” [12]. This is particularly relevant in this work, as we investi-
gate a restrictive form of communication, in the form of writing a computer
program, but also as we consider the gender biases that surround comput-
ers and technology. Mulvaney considers communication between genders
an “intercultural experience” (from which the title of this subsection was
taken), implying that the differing cultures and experiences of a man and
a woman cause them to interpret communications differently. In the con-
text of our work, would this mean a man might write a more terse, concise
program that does not consider any future human reader, and a woman
might be more “wordy” and include more explanation as she considers how
another individual might struggle with understanding her meaning? And
would that future individual find the extra explanation to be useful, or to
be clutter, and will this depend on their experiences and possibly, gender-
shaped beliefs? Mulvaney also goes on to state the following: “Language
also reflects differences in social status between genders. Research on gender
and language reveals that female language strategies invariably emulate the
subordinate, nonaggressive role of women in Western society.” Are these
female language strategies apparent in the use of programming languages?
Can we learn from Mulvaney’s analysis and produce styles of communica-
tion, including that of writing programming languages, that might be easier
to read for all individuals?

Some articles doubt that there are significant differences in language
use; those like [13] present evidence that there are little true differences in
the abilities and behaviours among genders, However recent studies such
as [14], [15] and [16] that have quantitatively examined gender differences
in language use have found significant differences. Of particular interest to
me is a mention in one study of a connection to testosterone and language:
“Overall, testosterone had the effect of suppressing the participants use of
non-I pronouns. That is, as testosterone levels dropped in the weeks after
the hormone injections, the participants began making more references to
other humans. Contrary to stereotypes about the subjective experience of
energy, positive affect, heightened sexuality, and aggression thought to be
related to this hormone, no consistent mood or other linguistic correlates of
testosterone emerged. One function of testosterone, then, may be to steer

6

peoples interests away from other people as social beings.” [16]

5.2 CMD

Another area of interest in relation to this project is that of computer-
mediated discussion/communication, often abbreviated as CMD or CMC.
Since the author’s anonymity can be, if the author wishes, preserved, iden-
tification of gender is left solely to the characteristics of their writing. In
studies of CMD researchers such as Coates hav found that linguistic char-
acteristics signalling gender are similar to those described in face-to-face in-
teraction [17]. However Herring clarifies this observation as follows: “There
is an overall tendency for some of these behaviors to correlate more with
female CMD users, and for others to correlate more with males. This does
not mean that each and every female and male manifests the behaviors;
exceptions to the tendencies can readily be found. It does mean, however,
that gender predicts certain online behaviours with greater than chance fre-
quency when considered over aggregate populations of users, controlling for
variables such as age, topic and the synchronicity of the medium” [18].

Also as described by Herring, politeness is another clue used to predict
gender in CMD. She reports on studies in which women are more likely to
be bothered by violations of acceptable usage guidelines to ensure polite
exchanges, and on other studies showing that computer-based chat groups
run by women are more likely to have such guidelines and of a stricter nature
than groups run by men [18].

5.3 Politeness

Politeness is an area that can be further investigated, although the defini-
tion of politeness in a computer program may be difficult to agree upon.
Is it polite to use long words that explain the use of the program? Or are
shorter words more polite, allowing the reader to parse the program more
efficiently and effectively. Similarly for comments, or non-computer-parsed
explanations; are more, or less a better way to program? Clearly this will
be open to interpretation and individual opinion, and research on the pos-
itive and negative aspects of each of these, in terms of understanding and
reading a program would be useful in supplying a base-line from which to
begin. Some work from linguistics addresses this in a verbal context. We
have all participated in awkward conversations, and similarly had an “easy”
conversation with someone. Why the differences? Part of the differences
we experience when conversing with different people might be attributed to

7

what [2] (quoting Grice 3) calls the cooperative principle: “Make your con-
versational contribution such as is required, at the stage at which it occurs,
by the accepted purpose or direction of the talk exchange in which you are
engaged.” There are then four maxims that follow from this: quantity; con-
tribute as much information as is required; quality; don’t lie, or make things
up; relation; only provide what is relevant; and manner; avoid obscurity and
ambiguity, and provide information in a brief and organized way. Moreover
Grice points out that speakers don’t always follow these maxims, and in
doing so may actually imply something different from what is being said. In
a similar category falls the concept of ‘face’; that is, we accept what others
are presenting to us as being the truth, and that they are presenting to us a
true image of themselves. Conversation also involves ‘face-work’; presenting
faces to one another, and protecting both our own and the other’s face [2]
(citing Goffman4). Thus participating in a conversation requires effort on
both parties, but that effort can be lessoned by appropriate cues, signals,
and actions by each participant. Are there lessons to be learned here for our
computer programs?

5.4 Power

Another topic that might be addressed is connections between language and
power. Indeed, the well-known McConnell and Eckert state that “...power
has been the engine driving most research on language and gender, moti-
vated partly by the desire to understand male dominance and partly by the
desire to dismantle it...” [19] (p. 474). In the context of this work we rule out
choices among languages, i.e. choices that might be made in a multi-lingual
community; however the way in which one particular language is used can
still communicate power (or the lack of it). This report does not address
this area, although the reader might be suggested to begin with resources
such as the following: [20], [21] or [22].

5.5 Discourse

This subsection seems somewhat redundant to me, as all investigation of
language involves an investigation of discourse, discourse being any verbal
or written form of communication. However many researchers in a variety

3Grice, H. P., 1975. Logic and Conversation, In Cole, P. and Morgan, J. L. (eds), 1975.
Syntax and Semantics. Volume 3, Speech Acts. New York, Academic Press.

4Goffman, E., 1955. On Facework: An Analysis of Ritual Elements in Social Interac-
tion. Psychiatry, 18:213–231. In Laver, J. and Hutcheson, S. (eds), 1972. Communication
in Face to Face Interaction. Harmondsworth, England: Penguin Books

8

of areas have written on gender and discourse. The in-depth investigation
of this area falls within the scope of an up-coming report related to this
project; however for now we direct the reader to texts such as [23], [24] and
[8].

6 Sociology, Anthropology, and Culture

This report makes an effort to pigeon-hole each related topic, and discuss it
separately from the big picture. Of course, this just isn’t possible. Eckert
and McConnell-Ginert’s article “Communities of practice: Where language,
gender, and power all live” supports this, in a sense, commonsense idea [19].
However in the context of this work, this means that discussing gender
and language is somewhat meaningless unless one also considers the context
and community: that of computer programmers, and computer program-
ming. Och’s work on physicists [25] is an interesting approach describing how
physicists use language to tie in visualizations and personify the scientific
constructs, and an examination of the process and discussions surrounding
programming might be equally interesting and illuminating. I feel, however,
that this is beyond the primary scope of this project. What is not beyond
the scope is consideration of how the culture of computers and computer
programming might affect the members of this community.

Many studies have examined connections between gender and computer
use and computer beliefs. For instance Sigurdsson’s study found that ex-
perience, rather than sex differences made a bigger difference in attitudes
towards computers. However he also reported the following: “...females
were significantly less positive toward computers than males. Females have
less experience of computer languages and use computers less often for pro-
gramming than males (although not significant). Sex differences on the
personality variables appeared to be much more significant. Females were
more emotional, dependent, self-critical and neurotic than males and they
were also more extraverted although not significantly.” [26]. Other studies
such as [27] made similar findings.

Whitley in his meta-analysis of studies finds that the overall gender
differences in beliefs about computers, affects, self-efficacy, and behaviour
towards them are small; however he finds a large difference in high-school
sex-role stereotyping. One can interpret this to mean that according to
the studies he examined, there is little difference in how children, adults,
or teens approach computers or believe in their abilities about computers,
except when it comes to teens, who believe that there is a large difference in

9

who should be working with computers. In Whitley’s own words, “Boys and
men, compared with girls and women, saw computers are more appropri-
ate to themselves, saw themselves as more competent on computer-related
tasks, and reported more positive affect toward computers. ” [28]. We
see the results of this in universities today; fewer women than men in di-
rectly computer-related fields such as computer science and engineering, and
higher drop-out rates for women than for men in these fields [29]. Klawe
and Leveson have pointed out that despite the advent of the internet, which
purportedly has provided equal opportunities to people regardless of gender,
fewer than 35% of IT professionals are women, and the number of female
college students majoring in computer-related fields has actually declined,
rather than increased as the popularity of the internet grew through the
1980s and 90s [30].

[31] provides a more recent analysis (2005) as well as an overview of the
plethora of studies; their findings differ in that they report females as having
higher confidence and attitudes towards the importance of computers, but
males as having better skills. Verkiri and Chronaki also present a study of
gender and computer attitudes, with perceptions of social support thrown in,
but statements such as “...even though during the 70s and the 80s one could
discern noticeable patterns of girls under-achieving in specific areas such as
mathematics and science, today the media sound bites reverse the story and
construct boys as having difficulties“ [32] suggest that cultural differences
are at work. In North America the media is certainly not “reversing the
story”, as evidenced by Sanders’ 2006 report [33]. Having said that, Vekiri
and Chronaki’s study focuses on the “gendered expectations” surrounding
computers, and identifies a need for educational and social “interventions”.

Walsh, Hickey and Duffy report also on an interesting finding; that
male or female labeling of the characters in math problems did not ac-
count for gender differences in performance, but prior beliefs that gender
differences existed (for a particular test) did result in women scoring lower
than men [34]. Could this imply that women, believing that computers are
not appropriate choices for them as careers, may self-fulfil this prophecy by
performing worse with computers? On the other hand, what does “worse
performance” mean, when a novice programmer is faced with a brand new
language and they have no concept of good style or effective habits? One
might assume that their “natural” use of language would creep into their
approach.

The evidence is varied, but the cultural impression seems to be that
computers are something that is better suited to males, whether for work
(e.g. career-choices) or pleasure (e.g. playing computer games). We see

10

evidence of this in the small percentages of women in our computer science
classrooms today. The question for this project is how might this impact
how people write computer programs, or does it?

Finally, it is worth mentioning Trechter’s chapter in Holmes and Mey-
erhoff’s Handbook of Language and Gender. Trechter discusses how gender
is “done” within various contexts of ethnicity [35]. This is relevant to this
work, in that Trechter discusses how behaviours change in order to for an
individual to express a gender, or to encourage a sense of “belongingness”
to a particular group. This may be evident in this work, as people may feel
the need to “fit in” to the perceived view of a programmer, but also are
doing gender at the same time.

7 Psychology of Programming

Weinberg [36] first coined this term and literally wrote the book on the psy-
chology of programming. He was the first to connect the dots between the
social aspects of writing computer programs and the end result. While this
book was written in 1971, in an era where one might argue that programming
was just beginning, Weinberg provides evidence and anecdotes to support
the ideas that programming was (and still is) an activity affected by various
factors, not the least of which is personality. In fact, Weiberg writes an en-
tire chapter on personality factors, in which he states “isn’t there some way
we can select those people whoe personalities suit them for programming”?
However some of the important factors that he selects include neatness and
ability to deal with stress, both of which I think are no longer relevant. Or
rather, one might say that these are important factors in nearly all careers,
not only programming! However he then goes on to mention assertiveness
and humility, and interestingly enough found that what he calls “humble”
programmers perform better in batch environments, where they were careful
to never make the same errors, and methodically checked their changes to
ensure that every run after the first few was free of syntax errors. Conversely
he argues that the “assertive” programmers performed better in an online
system, where hasty changes were made to fix things, which invariable led to
additional problems which would require additional fixes, but that this trait
would leave the “humble” programmer “gaping at the terminal”. This may
not hold true in today’s world, since batch processing is not as common as
it used to be; still, there may be a grain of truth linking certain style char-
acteristics to different types of projects and/or programming-related tasks.
In a following chapter Weinberg discusses some principles for programming

11

language design, which might be extrapolated to programming language
use. These principles are described below. UNIFORMITY: a language that
contains many deviations from a given rule (or set of rules) will violate the
principle of uniformity and will be more difficult to learn, and more difficult
to use without error. COMPACTNESS: Since the human mind has inherent
limitations in capacity, a short program (in general) will be more easily com-
prehended than a long one. Even the addition of non-executable text tended
(in his studies) to increase the difficulty in reading a program, even when the
intent of the additions was exactly the opposite! Compactness is not merely
counting the number of characters, however; since a word such as “BIG” can
be handled (by the human brain) just as easily as a single character e.g. ’A’.
Weinberg relates this idea of compactness to chunking; that is, a recoding of
longer chunks of information to a smaller piece that one can encompass in
its entirety. Abbreviations may help this, e.g. rewriting Procedure as Proc
to compress the section of information that is relevant. LOCALITY and
LINEARITY: Locality refers to the property that obtains when all relevant
parts of a program are found in the same place, while linearity refers to the
idea that when events occur in a predictable sequence, e.g. the notes in a
tune, they are easier to recall and comprehend as the appearance of each
item “triggers” the next. TRADITION AND INNOVATION: what comes
’naturally’ to the programmer, (and to the reader?) making a programming
language in some sense consonant with the other languages a programmer
knows.

Weinberg’s seminal work has spawned an entire area of research and
study including books such as [37]. A great deal of work in this area is
examining topics such as how people explain, and in turn understand, exist-
ing code [38] and researchers such as Burnett are looking at gender differ-
ences in how people interact with computer (human computer interaction,
or HCI) [39]. This is, of course, a small selection of the entire area, but
highlights some areas that may be of relevance to this project.

8 Programming: Good and Bad

People discussing links between computers and linguistics are generally re-
ferring to the area of computational linguistics. Computational linguistics
examines natural language, often with the goal of developing software that
will allow computers to “understand” statements written in natural lan-
guages. In this research I am going the other way; we have statements
written in an artificial language, designed for a computer to “understand”,

12

but what would a human say about these statements? This section of the
report talks about programming and how people can make use of program-
ming languages in different ways.

Looking at the literature on programming style, there is clearly an under-
standing that some styles are “good” while others are “bad”. This research
grew out of an observation that my programs that I would write looked very
different than those of one of my colleagues, despite both being function-
ally correct. Thus my initial thought was simply to compare styles to see
whether people might use programming languages in ways that were either
more or less “readable”. That is, programming languages are unlike natural
languages in that they are artificially created, and the rules behind the struc-
ture of a sentence simply cannot be broken. If those rules are broken, the
program will not work. Programmers, or people creating a text using some
programming language are always aware that the program they create will
be compiled by a computer. The process of creating a computer program
involves a person writing the program, a computer compiling the program
(or more accurately, by a computer executing the instructions contained in
another program), and finally the computer can then execute (carry out)
that set of machine language instructions to achieve the desired function-
ality. Thus one of the programmer’s goals (and sometimes their only goal)
is to write a program that can be compiled to machine language and suc-
cessfully carry out whatever functionality was originally desired. This is
not necessarily a good thing, however; with the growing complexity of com-
puter software it is becoming essential to also write programs with a human
audience in mind. I will elaborate on this further on.

Because all programs are designed to be compiled and then executed
(carried out) by a computer, computer languages of necessity are designed
to be context-free. This means there is one, and only one way to interpret
statements written in computer languages5. However, within those rules
there is some flexibility, most notably in the use of comments and in the
naming of identifiers.

5Some comment on context-free grammars is probably appropriate here, in that they
play a large part in both computer science and linguistics. Having said that, and as I
approach page 20 of this report I feel that an in-depth discussion would not add significant
understanding to the reader, and thus I suggest a textbook such as [40] to those who are
interested in this area.

13

8.1 Comments

Comments are sections of a program that are not designed for the com-
puter; they are, in fact, ignored when a program is compiled, and they are
generally written in a natural language. There exist some conventions for
the use of comments, particular if automatic documentation generation (e.g.
Doxygen [41]) is going to be used, but there is still the flexibility of how to
explain things within the format required by such tools.

8.2 Identifiers

Identifiers are the words used in a computer program. There are generally
rules around what constitues a “legal” identifier, such as restrictions as to
what characters may be used and where they may appear. Some identifiers
have pre-existing definitions within the language; these are referred to as
reserved words and (in most imperative languages6) include words such as
“if”, “else”, “while”, “for”. When a programmer is defining a block of
statements (a function or procedure) one generally labels this section with
some identifier; as long as the identifier is not a reserved word in the language
and follows the rules for creating an identifier, the sky is the limit. Thus
the identifier for a section of the program that counts the items in a list
could be CountItems, count items, doCountItems, mycountingprocedures,
or x. Of course, these are just a few of the almost limitless possibilities!
Identifiers are also used for naming variables, which can be briefly explained
as locations in the computer’s memory where data can be stored for use by
the program. The same rules are followed in this case.

8.3 Other

Despite the context-free nature of a programming language, it is still possible
to express the same thing in many ways. For example, to determine if the
value stored in variable X is less than 18 one might write any one of the
following:

if (X < 18) ...

if (18 > X) ...

if not (X >= 18) ...

6see section 8.4.1 for an explanation of imperative languages.

14

These all have the same meaning, but even a non-programmer will probably
see that one of these options is much clearer than the other two.

Organization of statements is also flexible, to a certain extent, and can
make a big difference to how a program looks. For instance, it is common
practice to group sections of code according to what function they are car-
rying out, and to declare all variables used within these groups at the start
of each group. However this is not required, and variables could be declared
anywhere within the block as long as they are declared before one attempts
to store data in them.

White space is also a big part of the look and feel of a program. Like
comments, the compiler ignores all white space in a program. A human
reader, though, can easily appreciate its use when comparing the two exam-
ples below:

#include <iostream>

using namespace std;

void main()

{

cout << "Hello World!" << endl;

cout << "Welcome to C++ Programming" << endl;

}

#include<iostream> using namespace std;void main(){cout<<"Hello World!"<<endl;

cout<<"Welcome to C++ Programming"<<endl;}

Even for an experienced programmer it is more difficult to parse the state-
ments and separate out identifiers and tokens in the second example.

Having defined some of the ways in which the use of programming lan-
guages can vary, I next address some of the research into the quality of
software and computer programs.

8.4 Quality

The quality of software is both hard to measure, and very important; current
research articles (e.g. [4]) as well as popular Software Engineering textbooks
(e.g. [42]) provide many convincing (and sometimes scary) examples of how
problems with software have affected people’s lives as well as the bottom
line. There is an argument that the quality of a piece of software can be
measured simply by how many bugs have been found in it, but there are
many problems with this. First of all, just because a bug hasn’t been found
yet doesn’t mean it doesn’t exist. It is not possible to prove that a program

15

is bug-free! Secondly, software is becoming so complex and having so much
invested in it that we can’t afford to throw it away when the next change
is needed. We have to continue to modify, maintain, and grow our software
systems, and that means people have to read, understand, and build on the
existing programs. Thus one can make a good argument that quality of
software could be measured by how easy a programmer finds it to work with
a particular program.

The following sections will explore some of the relevant research in this
area, with the goal of setting the stage for the directions that my project is
taking.

8.4.1 Types of Programming Languages

[43] discusses an interesting idea; that is, that a particular programming
language, or even type of programming language, is inherently more read-
able than another language or type. The author compares two programming
languages, Miranda and Pascal. Miranda is a functional programming lan-
guage, while Pascal is imperative. The underlying model is quite different,
making it difficult, sometimes, for a programmer to move from one type of
language to another. As described by the author,

The imperative model incorporates the Von Neuman machine
characteristics in the notions of assignment, state and effect. A
characteristic of this language class is the explicit flow of control,
e.g. sequencing, selection and repetition. In assignments, the
value of memory places denoted with variables in changed during
program execution. This model of operation by change of state
and by alteration of variable values is also named ‘computation
by effect’.

Thus a programmer writing in Pascal must consider the series of steps which
must be carried out in order to complete the desired task, and as well where
final and intermediate values required for the computation will be stored.
The functional model, in comparison, is quite different:

The functional model model is characterized by ‘computation
by value’. Functions return values and have no side-effects, and
expressions represent values. There is no notion of updatable
memory accessible by instruction. The program consists of a
script with a number of mathematical-like definitions and an
expression that must be evaluated. Functions can be passed as

16

arguments to other functions and can be the result of a function
application (higher-order functions).

The author argues that this model is more closely related to mathemati-
cal activities7. Because of this relationship there is an argument that the
functional style leads to more readable, and less fault-prone, programs. In
addition the author also argues that learning programming in a functional
style has advantages to learning in an imperative style. For example, in
order to compute the factorial of a number, in Miranda the code would read

fac n = product [1..n]

In an imperative language such as Pascal the code would be rather longer,
something like

function fact(n: integer): longint;

begin

if (n = 0) then

fact := 1;

else

fact := n * fact(n - 1);

end;

In the imperative language (Pascal) the programmer has to be aware that
memory storage is needed (a variable, in this case n), and as well has to
break the problem of computing a factorial into individual steps that can
be computed in a sequential way. That is, one has to see that a value
1 × 2 × 3 × . . .× n can be computed by finding n× n− 1, then multiplying
that by n− 2, then multiplying that by n− 3 all the way down to where we
are multiplying by 1. Of course, there are other ways to write this Pascal
function, but the same ability to break the problem down is required. In
Miranda we can see that the code is much simpler. However as more complex
tasks are required the syntax may not be as simple; defining a list containing
powers of 2 up to a value of n can be done like this:

powers_of_2 = [n | n <- 1, 2*n ..]

7This could lead to an interesting discussion on today’s culture, and whether, with
the current attitudes towards mathematics, a functional language would be more or less
difficult to introduce to novices, either in general or to particular groups e.g. boys or girls,
and whether cultural attitudes towards mathematics would affect how quickly people learn
a functional language in contrast to an imperative language.

17

but the programmer (and reader) has to understand the meaning of all the
symbols on the right of the equals sign. Now for a mathematician, this
looks very much like a mathematical formula, but for someone without that
background this would not necessarily be clear. I should note, in the sake
of fairness, that defining a similar list in Pascal would require a great deal
more lines of code; something like this:8

procedure squares(n: integer; var squaresList :Array[0..n] of longint);

begin

squaresList[0]=1;

for count:=1 to n do

squaresList[count] = 2*squaresList[count-1];

end;

The experiments reported on in [43] computed known static syntactic
complexity measures which the author equated with the idea of “readabil-
ity”. We discuss readability further in section 8.5. The author then com-
pared the values computed for these metrics with evaluations of readability
by lecturers in Computer Science, and found that there was a significant cor-
relation between the lecturers’ assessments of the readability of the Pascal
programs and the values of the complexity metrics; however the correlation
was much lower for the Miranda programs. The author explains this as
possibly being due to a lower standard of readability for Miranda programs.
I personally suspect that in this case the imperative language, being more
“English-like” is easier to evaluate for readability, while it might be more
appropriate to ask mathematicians to evaluate the readability of a Miranda
program. In summary this paper provides a nice discussion on imperative
versus functional programming languages, and attempts to compare them;
however for my work the primary use of this paper is to provide some illu-
mination for my choice of languages in the study being proposed.

8.5 Readability

As indicated in the previous section, the idea of “readability” seems to be
of importance. The authors of [44] define this as follows:

a human judgment of how easy a text is to understand.

8Yes, I know this won’t actually compile in Pascal because the size of arrays must
be known at compile time; however the equivalent block would work just fine in other
imperative langauges such as C. The point was just to show the difference between the
code in an imperative language versus a functional language, and the code samples in this
report are to be treated as pseudocode.

18

Why is it so important? As discussed earlier, computer programs are no
longer written solely for the computer, but equally so for the human reader.
[45] indicates that %70 of the total lifecycle of a piece of software is solely
maintainance; this means having people read, modify, and correct existing
programs. The same paper talks extensively about ways to reduce defects
in software, and many of the techniques they discuss involve having other
people review one’s code. These arguments all point towards how important
it is to write a program that is easy for people to read and understand.

[44] reports on the development of a metric that is used (in their case
on programs written in Java) to measure readability. As in the previously
discussed work, they then automate the measurement of the metric and
compare it to human evaluations. The correlation between the human eval-
uations and the automated metric is quite high, although they note some
interesting results. The metric they discuss is composed of a variety of
measures such as lengths of variable names and lines used in the program
(maximum and average); numbers of keywords (reserved words), numbers,
and identifiers (max and average); and average number of comments, and
average numbers of other tokens commonly used such as periods, commas,
spaces, and parenthesese. Other measures taken included branches (use of
the word if) and loops (use of for or while). In order to build their met-
ric they correlated each of these measures individually with their human
evaluations, and found that factors like average line length and number of
identifers were very important to readability, but that average identifier
length, and numbers of branches, loops and comparison operators were not.
This suggests that readability for programs is connected with being able to
quickly “grab” a portion of the code with they eye, and allow the brain to
consider it as a whole. That is, if a line is too long, the person reading it
cannot take in the line in its entirety, and has to do extra work in order to
process it. Similarly if too many unfamiliar words (i.e. identifiers) are used
then more work in figuring how to understand them must be carried out in
order to understand the code. This ties into ideas first introduced by Wein-
berg [36], who as far back as 1971 talked about principles for programming
language design that included ideas such as uniformity, compactness, local-
ity and linearity. Uniformity referred to ensuring consistency with the rules
of the language, while compactness encompassed the idea of breaking things
down into understandable chunks. Locality and linearity refer to keeping
similar ideas together and to arranging things in a logical order. While
Weinberg was suggesting that an entire language should be designed along
these principles, in practice this hasn’t really happened. However many on-
line experts [46, 47, 48, 49], as well as programming reference books such

19

as [50] list principles similar to these when suggesting what makes good
programming style9.

8.6 Code Smells

I loved the title of this blog [48] so much that I am borrowing it for this
report. The blog discusses things that the author has identified as warning
signals that something in the code might be wrong, or if it isn’t wrong now,
it could go wrong in the future. The author uses these as signs that there is
something in the code that should be fixed. While there is no experimental
evidence presented that these are examples of “bad” programming style,
the author does give reasons why each of the items listed are a bad idea. A
selection of these are listed below:

• Comments: There’s a fine line between comments that illuminate and
comments that obscure. Are the comments necessary? Do they explain
”why” and not ”what”? Can you refactor the code so the comments
aren’t required? And remember, you’re writing comments for people,
not machines.

• Long Methods: All other things being equal, a shorter method is easier
to read, easier to understand, and easier to troubleshoot.

• Long Parameter Lists: The more parameters a method has, the more
complex it is.

• Duplicated code: Duplicated code is the bane of software development.
Stamp out duplication whenever possible. Be on the lookout for more
subtle cases of near-duplication, too.

• Conditional Complexity: Watch out for large conditional logic blocks,
particularly blocks that tend to grow larger or change significantly over
time.

• Large Classes: Large classes, like long methods, are difficult to read,
underst and, and troubleshoot.

• Uncommunicative Names: Does the name of the method succinctly
describe what that method does? Could you read the method’s name

9It is worth noting that when going to Steve McConnell’s blog [46], the first two entries
are on technical debt, a term referring to really poorly written code that no one has had
time to go back and fix.

20

to another developer and have them explain to you what it does? If
not, rename it or rewrite it.

• Inconsistent Names: Pick a set of standard terminology and stick to
it throughout your methods. For example, if you have Open(), you
should probably have Close().

As an experienced programmer these seem reasonable guides, and reflect
lessons that I have learned in my career (usually the hard way). Thus I would
argue that if we turn this around, and identify (for instance) programmers
who consistently use good names, reasonably-sized classes, short parameter
lists and so on, we would find programmers who write “better” quality and
easier to read code.

8.6.1 Words (Identifiers)

Clearly many of these “code smells” or the lack thereof can be difficult to
automatically identify, thus requiring a human to evaluate the code. This
would be, in part, the job of a teammate or a marker, should the work be
for a course. Many of us would agree that An automatic evaluation of code
would be a useful thing in marking, for self-evaluation, and in industry. Thus
I next consider what, exactly, can be evaluated in a useful (i.e. automatic)
way. Class lengths, numbers of parameters, and complexity of conditionals
can all be identified; indeed the metric considered in [44] does many of
these. Duplication could also be automatically identified. What may be
more difficult is examination of the meaning of names. This seems to be a
problematic area, with work such as [51] looking at how natural language
analysis can be applied to source code to try and provide clues as to how
the program works.

Splotsky discusses the use of identifiers in code, but from a different
approach: in [47] he talks about how to choose identifiers that will tell you
if your code is incorrect. This isn’t a novel idea, as the basic idea was
introduced in 1976 in a version called Hungarian Notation [52]. The idea is
to name your identifiers in such a way that you can tell what is supposed to
be stored in them. Thus rwMax is a variable that stores the maximum row
size. Then if you you see a statement like rwMax= −5 a little alarm should
go off in your head, even if you’ve never seen the program before and have
no idea what it does. [47] gives some additional examples of how to ensure a
particularly nasty web security vulnerability could be avoided by using this
type of naming convention.

21

9 Conclusion

This report has provided an exploration of the fields related to the proposed
project. To remind the reader, the research questions I propose to investigate
are

• do sociological factors such as gender, experience, or first language
spoken play a role in how people write computer programs?

• if so what characteristics seem to be associated with these factors?

• if not, why not?

As described in this work there are a variety of reasons for asking these
questions, and similarly a variety of ways to attempt to answer them. I have
found as I have written this report that it has served a number of purposes:
it has illuminated how much more research and background is needed in
the various areas related to this project; it has raised many, many more
related questions that could be investigated; and it has demonstrated how
truly multidisciplinary this project must be. Most importantly, however,
the writing of this report has enhanced my knowledge of the various areas
that can be brought in as investigative tools for this work.

10 Appendix: Questions and projects to propose

• code-selection and code-switching in programming languages: an in-
vestigation.

• is there gender bias in how we teach programmming, e.g. in the lan-
guage used in the teaching process? How does this affect the end
results?

• doing gender through programming

• do conversational differences show up in programming style? E.g. if an
individual is more or less polite how might that affect their programs?

• can research in linguistics be applied to more effective teaching of
programming languages?

• does the first language a person speaks (native language) affect how
they program? similarly for the the first language they learn to pro-
gram in?

22

• do people who are fluent in a programming language use natural lan-
guage differently?

• how can we (and do we need to) redefine Chomskys notions of com-
petence and performance, in terms of programming languages?

• what is the effect of age-grading on programming language use? (age-
grading in programming: does it exist, and how is it characterized?)

• can we, and how should we proceed to, build a corpus of commonly-
accepted usages of programming languages? what would be the ad-
vantage of such?

References

[1] Paul Ralph. Software design science research pro-
gram, 2012. web page for research program,
http://paulralph.name/research/software design/, accessed March
2012.

[2] Ronald Wardhaugh. An Introduction to Sociolinguistics. Blackwell
Publishers, Oxford, UK, 1992.

[3] Francois Taiani, Paul Grace, Geoff Coulson, and Gordon Blair. Past
and future of reflective middleware: Towards a corpus-based impact
analysis. In Proceedings of the 7th workshop on Reflective and adaptive
middleware (ARM), pages 41–46. ACM, 2008.

[4] Nicolas Bettenburg and Ahmed E. Hassan. Studying the impact of so-
cial structures on software quality. In Proceedings of the 17th IEEE In-
ternational Conference on Program Comprehension (ICPC ’10), pages
124–133. IEEE, 2010.

[5] Mary M. Talbott. Language and Gender. Polity Press, 1998.

[6] S. Kendall and D. Tannen. Gender and language in the workplace. In
R. Wodak, editor, Gender and Discourse. Sage, London, 1997.

[7] Holmes and Myercroft. Handbook of Gender and Language. Wiley-
Blackwell, 2003.

[8] A. Weatherall. Gender, Language and Discourse. Taylor & Francis,
2002.

23

[9] P. Eckert and S. McConnell-Ginet. Language and Gender. University
Press, Cambridge, UK, 2003.

[10] Mary M. Talbott. Language and Gender. Polity Press, 2nd edition,
2010.

[11] Mary Hiatt. The Way Women Write. Teachers College Press, New
York, NY, 1977.

[12] B. M. Mulvaney. Gender differences in communication: An intercultural
experience. downloaded May 2012.

[13] J. S. Hyde. The gender similarities hypothesis. American Psychologist,
60(6):581–592, 2005.

[14] M. L. Newman, J. W. Pennebaker, D. S. Berry, and J. M. Richards.
Lying words: Predicting deception from linguistic style. Personality
and Social Psychology Bulletin, 29(5):665–675, May 2003.

[15] M. L. Newman, C. J. Groom, L. D. Handelman, and J. W. Pennebaker.
Gender differences in language use: An analysis of 14,000 text samples.
Discourse Processes, 45:211–236, 2008.

[16] Cindy Chung and James Pennebaker. The psychological functions of
function words. In K. Fiedler, editor, Social Communcation, pages
343–359. Psychology Press, New York, 2007. chapter 12.

[17] J. Coates. Women, Men and Language. Longman, London, 2nd edition,
1993.

[18] S. Herring. Gender and power in online communication. In J. Holmes
and M. Meyerhoff, editors, Handbook of Language and Gender. Black-
well, 2003.

[19] P. Eckert and S. McConnell-Ginet. Communities of practice: Where
language, gender, and power all live. In K. Hall, M. Bucholtz, and
B. Moonwomon, editors, Locating Power, Proceedings of the 1992
Berkeley Women and Language Conference, pages 89–99, Berkeley,
1992. Berkeley Women and Language Group.

[20] N. Fairclough. Language and power. Longman, 2nd edition, 2001.

[21] P. Simpson and A. Mayr. Language and Power: A Resource Book for
Students. Taylor & Francis, 2010.

24

[22] P. Kunsmann. Gender, status and power in discourse behavior of men
and women. Linguistik online, 5, Jan. 2000.

[23] R. Wodak, editor. Gender and Discourse. Sage,
London, 1997. accessed May 2012 online at
http://lib.myilibrary.com.ezproxy.lancs.ac.uk?ID=255966.

[24] L. Litosseliti and J. Sunderland. Gender identity and discourse analysis.
John Benjamins, Philadelphia, PA, 2002.

[25] E. Ochs, S. Jacoby, and P. Gonzales. Interpretive journeys: How physi-
cists talk and travel through graphic space. Configurations, 1:151–171,
1994.

[26] J. F. Sigurdsson. Computer experience, attitudes toward computers and
personality characteristics in psychology undergraduates. Personality
and Individual Differences, 12(6):617–624, 1991.

[27] T. Busch. Gender differences in self-efficacy and attitudes toward com-
puters. Journal of Educational Computing Research, 12:147–158, 1995.

[28] B. J. Whitley Jr. Gender differences in computer-related attitudes and
behavior: A meta-analysis. Computers in Human Behavior, 13(1):1–22,
1997.

[29] J. E. Rice. Being a woman in computer science in alberta. In G. Boni-
facio, editor, WGST 1000 Workbook: Gender Vista. University of Leth-
bridge Print Services, 2012. published as part of course pack for Fall
2012.

[30] M. Klawe and N. Leveson. Women in computing: where are we now?
Communications of the ACM, 38(1):29–35, January 1995.

[31] T. Faekah and T. Ariffin. Gender differences in computer attitudes and
skills. Jurnal Pendidikan Malaysia, 30:75–91, 2005. downloaded from
http://journalarticle.ukm.my/152/ May 2012.

[32] I. Vekiri and A. Chronaki. Gender issues in technology use: Perceived
social support, computer self-efficacy and value beliefs, and computer
use beyond school. Computers and Education, 51:1392–1404, 2008.

[33] J. Sanders. Gender and technology. In C. Skelton, B. Francis, and
L. Smulyan, editors, Handbook of Gender and Education. Sage, London,
UK, 2006.

25

[34] M. Walsh, C. Hickey, and J. Duffy. Influence of item content and stereo-
type situation on gender differences in mathematical problem solving.
Sex Roles, 41(314):219–240, 1999.

[35] S. Trechter. A marked man: The contexts of gender and ethnicity.
In J. Holmes and M. Meyerhoff, editors, Handbook of Language and
Gender. Blackwell, 2003.

[36] G. M. Weinberg. The psychology of computer programming. Van Nos-
trand Reinhold, New York, NY, 1971.

[37] J.-M. Hoc, T. R. G. Green, R. Samurcay, and D. J. Gilmore, editors.
Psychology of Programming. Academic Press, London, UK, 1990.

[38] R. Yates. Expert explanations of software. In Psychology of Program-
ming Work in Progress, April 2011.

[39] M. Burnett, S. D. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq,
V. Grigoreanu, and M. Czerwinski. Gender differences and program-
ming environments: across programming populations. In Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM ’10, pages 28:1–28:10, New
York, NY, USA, 2010. ACM.

[40] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison Wesley, 3rd
edition, 2006.

[41] Dimitri van Heesch. Doxygen manual, 2012. http://www.stack.nl/˜
dimitri/doxygen/.

[42] Ian Sommerville. Software Engineering. Addison-Wesley, 9th edition,
2010.

[43] Klaas G. van den Berg. Syntactic complexity metrics and the read-
ability of programs in a functional computer language. In F.L. Engel,
D.G. Bouwhuis, T. Bosser, and G. d’Ydewalle, editors, Cognitive Mod-
elling and Interactive Environments in Language Learning, volume 87
of NATO Advanced Science Institute Series, pages 199–206. Springer,
Berlin, Germany, August 1992.

[44] Raymond P.L. Buse and Westley Weimer. Learning a metric for code
readability. IEEE Transactions on Software Engineering (TSE Special
Issue on the ISSTA 2008 best papers), 36(4):546–558, 2010.

26

[45] Barry Boehm and Victor R. Basili. Software defect reduction top 10
list. Computer, 34(1):135–137, Jan. 2001.

[46] Steve McConnell. Software best practices (blog), 2012.

[47] Joel Splotsky. Joel on software (blog), May 2005. en-
try titled “Making Code Look Wrong”, accessed March 2012,
http://www.joelonsoftware.com.

[48] Jeff Atwood. Coding horror: programming and human factors,
May 2006. entry titled “Code Smells”, accessed March 2012,
http://www.codinghorror.com/blog/.

[49] Roedy Green. How to write unmaintainable code, 1997.
http://thc.org/root/phun/unmaintain.html.

[50] B. Kernighan and R. Pike. The Practice of Programming. Addison-
Wesley Professional, 1999.

[51] Lori Pollock, K. Vijay-Shanker, David Shepherd, Emily Hill, Zachary P.
Fry, and Kishen Maloor. Introducing natural language program analy-
sis. In Proceedings of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE ’07), pages 15–16. ACM, 2007.

[52] Charles Simonyi. Meta-programming: a software production model.
Technical report, PARC Technical Report CSL-76-7, Dec. 1976.

27

