
Reversible Logic Synthesis Example using a
Transformation Based Algorithm

B. Gergel
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

Email: barry.gergel@uleth.ca

J. Rice
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

Email: j.rice@uleth.ca

Abstract— Interest in quantum computing, nanotech-
nology, and low power consumption circuits is fueling
the expanding research in reversible logic synthesis. A
reversible function is one that generates a unique output
vector for every input vector. Traditional circuits are
designed with AND and OR gates that allow fan-outs
and loop back results which often results in inefficient
energy consumption. In contrast, reversible circuits must
preserve the number of outputs to the number of inputs
and can only be represented as a cascade of reversible gates.
Thus traditional synthesis techniques are not adequate
for working with reversible functions. Miller et al. have
created a novel approach for synthesizing the functions
into near-optimal reversible networks. The aim of this
paper is to provide a thorough example demonstrating their
template matching algorithm, and summarize their work
in reversible logic synthesis.

I. INTRODUCTION

Research in the synthesis of reversible logic circuits
is a growing area of study and is motivated by a number
of factors. Digital systems have played a major role in
the development of the modern world in the last seventy
years. The ability to manipulate discrete values in an
ordered fashion is a hallmark of these systems, which are
traditionally represented by logical functions containing
AND and OR gates. These circuits are one directional
and contain logic that allows for fan-outs and loopbacks.
These traditional irreversible circuits have been shown
to result in the dissipation of energy [1]. With modern
circuits shrinking in size and increasing in density, the
dispersion of the extra energy has become a problem. In
order for a circuit to retain its energy, Bennett [2] showed
that the circuit must be constructed with reversible gates.
Another area of interest is that of quantum computing.
The realization of a quantum computer has reversible
circuits as a key component [3]. Also stimulating interest
in reversible logic is the area of nanotechnology [4] as
power management on such a small scale becomes even
more challenging.

As we have noted above traditional synthesis tech-
niques are inadequate for reversible logic applications.
Thus the creation of methods to synthesize reversible
logic is of great interest. In reversible circuits fan-outs

and loopbacks are not allowed. Therefore, reversible
functions cannot be represented using gates such as AND
and OR, but instead they must be represented by a
cascade of reversible gates [5]. There are a large number
of libraries of reversible gates, but in this paper we focus
on n ∗n Toffoli gates [6]. There have been a number of
approaches for synthesizing reversible functions to cir-
cuit representations. These methods have included those
based on dynamic programming [7], transformation-
based synthesis [8], and heuristics methods [9], [10].
The early solutions struggled with a couple problems.
Some suffer in performance due to extensive search
requirements, and others are not guaranteed to converge
while generating the reversible circuit.

The algorithm examined in this paper uses a two-
step method to generate the reversible circuit. First the
reversible function is transformed into a circuit. Next, a
series of templates are matched against the generated
circuit, and any matches allow for the reduction of
the circuit size by replacing the matched template with
a reduced chain of gates that generates the same as
the template. Key features of this algorithm are that it
is guaranteed to converge, does not require excessive
search time, and generates near optimal results [11].

In the following section, background information cov-
ering the definitions required to understand the algorithm
are presented. This is followed by presentation in sec-
tion III and analysis of the algorithm in section IV. A
complete example demonstrating the realization of a 3-
input, 3-output reversible function is shown in section
V. Finally, the conclusion looks at some of the strengths
and weaknesses of the algorithm. We also touch on some
of the work that has followed which uses this algorithm
as a foundation.

II. BACKGROUND

The following definitions outline material required to
understand the synthesis of reversible logic.

Definition 1: A reversible function,
f(x1, x2, . . . , xn), maps each input vector to a
unique output vector[12]. The function, which must



have the same number of inputs n as outputs n0, can be
shown [13] as a bijective mapping of the set of integers
{0, 1, . . . , 2n − 1} onto itself, or as a standard truth
table as shown in Table I.

Definition 2: A reversible logic gate has k-inputs and
k-outputs, and transforms a input into a unique pattern.
As each reversible gate is also invertible, which means
each gate has an inverse gate [14]. There are many
proposed reversible gate libraries. In this work we restrict
our choice to 3-gate subset of the Toffoli family of gates
as done by Miller et al. [13].

Definition 3: For the set of domain variables
{x1, x2, . . . , xn} the generalized Toffoli gate [11] has
the form Tof(C;T ), where C = {xi1 , xi2 , . . . , xik

},
T = {xj}, and C ∩ T = ∅. Such a gate
maps the Boolean pattern (x0

1, x
0
2, . . . , x

0
n) to

(x0
1, x

0
2, . . . , x

0
j−1, x

0
j ⊕ x0

i1
x0

i2
. . . x0

ik
, x0

j+1, . . . , x
0
n).

The set C which controls the change of the j-th bit is
called the set of control lines and T is called the target.

For the purposes the example demonstrated in this
paper, we only consider a subset of three gates from
the Toffoli family as shown in Figure 1.

i) inverts the value t but has no control lines. This is
a traditional NOT gate, and we represent it in this
paper as Tof(; t).

ii) inverts t only if ci is also 1, and the gate is written
as Tof(ci; t). This gates is commonly known as a
CNOT gate or a Feynman gate [15]

iii) represents a 3-input gate where the target t is
transformed if both the controls lines are 1. It is
represented as Tof(c1, c2; t) which is often called
the Toffoli gate [6]

t

c1

c2
i) ii) iii)

Fig. 1. i) Tof(; t) ii) Tof(ci; t), and iii) Tof(c1, c2; t) Toffoli gates

Definition 4: A reversible circuit is a well-formed
acyclic combinational logic circuit in which all the
gates are reversible and interconnected [16]. Because
reversible circuits do not allow fan-outs or loop backs,
they may only be represented as a cascade of gates [5]
will have n input and n output lines.

Definition 5: The cost of realization of a reversible
circuit is defined as the number of gates required to bring
the reversible function to its identity [17].

Definition 6: The complexity C(f) of a reversible
function f is the sum of all 2n input/output Hamming
distances added together [13].

III. ALGORITHM

The goal of an algorithm that synthesizes a reversible
circuit is to transform a reversible function into an
optimal network of reversible gates. The basic process
involves generating the circuit by applying Toffoli gates
to bring the reversible function to its identity function.
An algorithm generating gates to represent a reversible
circuit should converge to ensure that a circuit is created.
If a valid reversible function is supplied to the algorithm,
it must create a valid representation of the function.
Another important consideration is the ability of the
algorithm to generate reversible circuits with the smallest
gate count possible. Cost savings for reversible circuits
can be further enhanced by algorithms that do not
generate garbage lines to realize a circuit. Reducing the
costs of circuit realization is a primary motivation for
all forms of logic synthesis, and reversible logic is no
different.

In this paper we chose to evaluate and demonstrate
the algorithm presented by Miller et al. [13]. Their
algorithm is guaranteed to converge with a maximum
of (n − 1)2n + 1 Toffoli gates to represent a reversible
function. Through the application of template matching,
they have been able to achieve near optimal results
with this algorithm. Another reason for choosing this
particular algorithm is that it is the basis for further
research [17], [5], [11]. The algorithm uses a truth table
to represent a n ∗ n reversible function. An example of
the composition of a truth table representation of the
reversible function is shown in Table I.

A. Stage 1 – Circuit Realization

The first goal of the algorithm is to create a sequence
of Toffoli gates that represents the reversible function.
Miller et al. have created two algorithms that converge
and generate a reversible circuit with an upper bound of
(n− 1)2n + 1 Toffoli gates. A 3 ∗ 3 reversible function
would require at most 17 gates to reach its identity
function as demonstrated in the 3 17.plafunction [11].
The basic algorithm greedily generates the cascade of
gates by the application of Toffoli gates to the f() side of
the truth table only. The second method synthesizes the
circuit by applying Toffoli gates simultaneously to both
sides of the truth table. The result of the bidirectional
algorithm can realize the function with fewer gates in the
circuit [13]. T As the reversible function is transformed
during realization, the following notation f+ to represent
the current function specification.



Algorithm 1 Simple Realization Algorithm
{First make sure 0 = f(0)}
if f(0) 6= 0 then

for all 1-bit in f(0) do
Apply Tof(;xi) to transform f(0) = 0

end for
end if
{Progress through each input/output value until f+ is
the identity}
for i = 1 to (2n − 1) do

if f+(i) = i then
continue;

else
{Find all the incorrect bits to realize i = f+(i)}
for j = 0 to (n− 1) do

if f+
j (i) = 0 and ij = 1 then

pj ⇐ 1
else

pj ⇐ 0
end if

end for
for k = 0 to (n− 1) do

if f+
k (i) = 1 and ik = 0 then

qk ⇐ 1
else

qk ⇐ 0
end if

end for
{Apply Toffoli Gates to realize i = f+(i)}
for all pj = 1 do

Cj ⇐ {xi : ij = 1}
Apply Tof(Cj ; pj) gate to truth table
Circuit ⇐ insert Tof(Cj ; pj) at head of list

end for
for all qk = 1 do

Ck ⇐ {xi : f+(ik) = 1}
Apply Tof(Ck; qk) gate to truth table
Circuit ⇐ insert Tof(Ck; qk) at head of list

end for
end if

end for
return Circuit {Cascade of gates representing f()}

1) Simple Realization: To synthesize the reversible
function, the basic algorithm applies Toffoli gates to the
output side of the specification. It starts at 0, and pro-
gresses through each value in the specification applying
gates to transform each f(i) to i. The choice of gate
applied becomes important to ensure convergence by
not undoing previously applied transformations. Because
each gate that is applied to modify a value must be
applied to all the values in the output section, making use
of the Toffoli family of gates ensures that the algorithm

will converge.
Step one of the algorithm ensures that 0 = f(0) by

applying a Tof(;xj) gate to each 1 bit. After the first
value is transformed the algorithm progresses from 1
to (2n − 1) transforming each i = f(i) through the
application of Toffoli gates. The gates are inserted to
the head of a list to preserve the ordering of the gates.
Algorithm 1 shows how the basic algorithm is able to
convert a reversible function into a reversible circuit.

2) Bidirectional Realization: The bidirectional algo-
rithm, shown in Algorithm 2, realizes a reversible func-
tion by applying Toffoli gates to both the input and
output sides of the specification. The effect is that the
algorithm applies transformations based on the number
of gates required, instead of how close they map to the
identity. The net result is that the created circuit is equal
to or smaller than the circuit generated by the basic
algorithm. In most cases, smaller circuits are realized
by the bidirectional algorithm.

At each i in the truth table, the number of transforma-
tions required for the input and output side is calculated.
If the number of transformations for the output side is
less than or equal to the transformations required for
input, then the method used in the basic algorithm is
applied to the output side of the specification. Otherwise,
Toffoli gates are applied to input values. This results in
the ordering of the input side no longer being in the
proper sequence, but i = f(i) on some line greater than
i. Therefore, sorting the input values of the specification
restores proper ordering and i = f(i) is located in its
proper location. An example of the differences between
the effectiveness of the bidirectional algorithm versus the
basic algorithm would be the generation of the reversible
function f(7, 0, 1, 2, 3, 4, 5, 6) [13]. For this function, the
basic algorithm generated a circuit consisting of 7 gates
while the bidirectional algorithm generated a circuit of
only 3 gates. In our example, our reversible function
also generates a smaller circuit using the bidirectional
realization algorithm.

B. Stage 2 – Template Matching

The reversible circuits generated during stage 1 of
the algorithm are possibly not optimal. The goal of the
second stage of the algorithm is to further reduce the
cost of the reversible circuit. This is achieved through
the matching of a template to part of the circuit. Miller
et al. describe a library of templates which they have
divided into 5 classes [13]. Each template consists of two
circuits. The first circuit of the template is a commonly
found in circuits generated during the realization stage.
The second circuit is a smaller gate sequence that is
substituted for the first. An example template is shown in
Figure 5. The algorithm checks all the templates against



Algorithm 2 Bidirectional Realization Algorithm
for i = 0 to (2n − 1) do

x ⇐ bit changes to bring output side to f+(i) = i
search for f+(i) → j where i < j ≤ 2n − 1
y ⇐ bits changes to bring input side to f+(i) = i
if x ≤ y then

Apply Toffoli gates to transform f+(i) until
f+(i) = i
RightCircuit ⇐ add gate to head of list

else
Apply Toffoli gates to transform i until i = f+(i)
LeftCircuit ⇐ add gate to end of list
sort truth table on first column in ascending order

end if
end for
Circuit ⇐ LeftCircuit
Circuit ⇐ append RightCircuit to the end of the list
return Circuit {Cascade of gates representing f()}

the realized circuit, and any matches further reduce the
cost of the reversible circuit.

When the algorithm is checking the realized circuit
for the presence of template it does so by comparing
gates of the circuit with the gates contained in template
of the current class. The algorithm, shown in Algorithm
3, searches for the presence of gates for each template
and choose to replace the largest template discovered
in the realized circuit. Once it has identified that the
gates are present that match a template, the gates of
the realized circuit might need to be moved in order
to match the template. Gates can be moved in a circuit
based on the moving rule which allows the order of two
gates, Tof(C1, t1) and Tof(C2, t2), to be interchanged
if, and only if, C1 ∩ t2 = ∅ and C2 ∩ t1 = ∅ [17]. The
realized circuit may also be reduced using the deletion
rule which allows two adjacent gates that are equal to be
removed. Once the template matching has finished the
resulting reversible circuit should be near optimal, and
Miller et al. show these results when comparing all the
reversible functions of 3-input/3-output size [13].

IV. ALGORITHM ANALYSIS

An analysis of the algorithm yields an overall time
cost of O(n ·2n) and a space requirement of O(2n). The
cost of both the simplified realization and bidirectional
realization are the most costly part of the algorithm,
and this is due to the representation of the reversible
function as a truth table. The template matching stage
of the algorithm is much less expensive at O(n3). The
benefit of a guaranteed convergence when realizing a
reversible function combined with the near optimal result
after template matching is complete make the algorithm

Algorithm 3 Template Matching Algorithm
for all Template classes do

search Circuit for gates in templates of the current
class
{Match gates to the largest possible template}
if all gates in a template are found in the Circuit
then

if Gates of template are not in sequence then
Apply moving rule

end if
if gates are in sequence of template then

Replace matched template with reduced se-
quence

end if
if two adjacent gates are equal then

Apply deletion rule
end if

end if
end for
return Circuit { Cascade of gates representing f()}

very effective. Techniques to reduce the costs of the
representation as truth table would greatly enhance the
ability of the algorithm to process larger reversible
functions.

V. EXAMPLE

One of the main goals of this paper is to demon-
strate the presented algorithm to synthesize a 3-input,
3-output reversible function into a valid reversible circuit
of Toffoli gates. A small function of size n = 3 is
used in this example to show how each part of the
algorithm works. We demonstrate both circuit realization
algorithms as well as applying the template-matching
step to the reversible circuit generated by the bidirec-
tional algorithm. The reversible function we chose to
demonstrate is {5, 2, 0, 4, 7, 3, 1, 6} as shown in Table
I. The function was randomly chosen from the set of
reversible functions that have not been showcased in [5],
[11], [13], [17].

cba c0b0a0

0 0 0 1 0 1 (5)
0 0 1 0 1 0 (2)
0 1 0 0 0 0 (0)
0 1 1 1 0 0 (4)
1 0 0 1 1 1 (7)
1 0 1 0 1 1 (3)
1 1 0 0 0 1 (1)
1 1 1 1 1 0 (6)

TABLE I
TRUTH TABLE FOR REVERSIBLE FUNCTION {5, 2, 0, 4, 7, 3, 1, 6}



A. Simple Realization
The algorithm for the simple realization of the re-

versible circuit is the first example demonstrated. The
circuit that is generated by the algorithm is shown in
Figure 2, and a table representing the application of the
Toffoli gates is shown in Table II. The bits modified by
the application of a Toffoli gate are highlighted in each
column that represents the current state of the output
side. The following steps review which gates are added.

Step 1: The first step in the algorithm is to make sure
that the mapping f(0) → 0. As our function is f(5) → 0,
we need to apply a Tof(; a) gate and a Tof(; c) gate.
This results in the a and c bits being inverted for the
whole truth table.

Step 2: The next step involves transforming the next
row of the specification, f+(7) → 1. This is going to
require the application of two Toffoli gates to reduce
the output side to equal the input side, but we must not
change the values of f+(0) → 0. In order to do this, we
make use of the value of a to serve as a control line for
the Toffoli gates. We achieve the desired result using a
Tof(a; b) and a Tof(a; c) gate.

Step 3: The a bit in f+(3) → 2 specification is
1, which is incorrect. Again, to not undo our earlier
modifications we make use of a control line, in this
case b, and apply a Tof(b; a) gate to transform the
specification as required. This is the first level in the
specification where we only need to apply a single gate
to gain the transformation required.

Step 4: The transformation of f+(6) → 3 requires the
application of a Tof(c, b; a) gate and a Tof(a, b; c) to
bring the mapping to f+(3) → 3.

Step 5: The mapping f+(4) → 4 requires a
Tof(a, c; b) gate and a Tof(c; a) gate to correct the
mapping of f+(7) → 4.

Step 6: Next the mapping of f+(7) → 5 must be
transformed to f+(5) → 5, and this is achieved with the
application of a Tof(c, a; b) gate.

Step 7: In this final step, the mapping f+(7) → 6
requires a Tof(c, b; a) gate to correct the mapping. This
also transforms f+(6) → 7 to the correct mapping.
This final gate transforms our reversible function into
the identity function.

With the application of the last gate, our circuit has
been generated. The circuit shown in Figure 2 should be
read from right to left. This is because while transform-
ing the function to its identity, we applied the gates to the
output side of the function to bring it to the input side.
The simple realization algorithm converged successfully
and generated a circuit containing 11 Toffoli gates.

B. Bidirctional Realization
The realization of a reversible circuit using the bidi-

rectional realization algorithm should hopefully gener-

a

b

c

a0

b0

c0

Fig. 2. Circuit generated by the Simple Algorithm

ate a circuit containing fewer gates than the previous
algorithm. In the application of this algorithm both the
input and output sides of the function specification are
modified. This makes creating a table as used in the
previous example harder to follow. Thus, for the first gate
that is applied to the input side we use a smaller table as
shown in Table III to illustrate modification to the initial
inputs followed by sorted version of the specification.
After this all the gate transformations are shown in Table
IV where the direction of the gate is shown. The Toffoli
gates that are applied against the input side are presented
in the sorted form. Because the transformations affect
both input and output but we are only displaying the
output side in Table IV, the bits which are modified by
each gate are not highlighted.

Step 1: At each iteration of the bidirectional algorithm,
the number of bits k of the input to map j → i which
results in the correct mapping of f+(i) → i is compared
against the number of bits l required on the output side
to bring f+(i) → i. If l ≤ k then we apply gates to the
output side. Otherwise, apply the Toffoli gates required
to the input side and then sort the specification to reorder
the input side values. In this step k = 1 because of
f(2) → 0, and l = 2 because of f(5) → 0. Because
k < l, we apply a Tof(; b) gate to the input side and
then sort the table. This results in the required mapping
of f+(0) → 0.

cba c1b1a1 cba c1b1a1

0 1 0 1 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1
0 0 1 1 0 0 0 1 1 0 1 0
1 1 0 1 1 1 1 0 0 0 0 1
1 1 1 0 1 1 1 0 1 1 1 0
1 0 0 0 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1

TABLE III
BIDIRECTIONAL ALGORITHM – FIRST INPUT SIDE GATE←TOF(;B)

Step 2: In this step f+(1) → 4 making k = 2 while
f+(4) → 1 makes l = 2. Because k = l, we apply a
Tof(c; a) gate and a Tof(a; c) gate against the output
side instead of modifying the input side. This saves the
cost of having to complete two sorts and results in the



cba c1b1a1 c2b2a2 c3b3a3 c4b4a4 c5b5a5 c6b6a6 c7b7a7 c8b8a8 c9b9a9 c10b10a10 c11b11a11

000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
010 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
011 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
100 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0
101 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1
110 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0
111 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1

T (; c) T (; a) T (a; b) T (a; c) T (b; a) T (c, b; a) T (a, b; c) T (a, c; b) T (c; a) T (c, a; b) T (c, b; a)

TABLE II
RESULTS OF APPLICATION OF SIMPLE REALIZATION ALGORITHM

required f+(1) → 1 mapping.
Step 3: The mapping of f+(2) → 3 makes k = 1,

while l = 2 due to the mapping of f+(4) → 2. A
Tof(b; a) gate is applied to the input and the specifi-
cation is sorted. The required mapping of f+(2) → 2 is
satisfied.

Step 4: The next required mapping f+(3) → 3 has
k = 2 with f+(3) → 5, and l = 3 with f+(4) →
3. Therefore, by applying a Tof(c, a; b) gate and a
Tof(a, b; c) gate to the input side and sorting, the proper
mapping is realized.

Step 5: With l = 1 from f+(5) → 4 and k = 2 from
f+(4) → 7, a Tof(c; a) gate is applied to the output
side. This generates the f+(4) → 4 mapping.

Step 6: The f+(5) → 7 mapping sets k = 1 and
f+(7) → 5 sets l = 1. Because k = l, a Tof(c, a; b)
gate is applied to the output side generating the required
mapping of f+(5) → 5.

Step 7: Because both f+(6) = 6 and f+(7) = 7, the
algorithm does generate any further gates as the function
is fully realized.

The synthesis of our reversible function
{5, 2, 0, 4, 7, 3, 1, 6} is realized with 8 gates using
the bidirectional algorithm which is better than the 11
gates generated by the simple realization algorithm. A
diagram of this realization is shown in Figure 3. In
reading this diagram it is important to realize that gates
applied to the input side go from left to right, while the
gates applied to the output side go from right to left.

a

b

c

a0

b0

c0

Fig. 3. Circuit generated by the Bidirectional Algorithm

C. Template Matching

Finally we get to the point of testing our generated
reversible circuit against the template library to identify
any further reductions that might be made. We apply the
algorithm for template matching to our circuit using the
template library [13], and this yields two templates that
match. Template 1: The first template match is template
1.2 which swaps two values and is shown in Figure 4.
The application of this template removes 3 gates from
the right side of the circuit by swapping the lines for a
and c.

Fig. 4. Template 1.2

Template 2: The second template that is discovered in
our circuit is the inverse of template 5.1 (shown in Figure
5). It is important to note that this template does not
reduce the gate count but reduces the number of control
lines from 2 to 1 for two of the gates. The physical
cost of implementing is less for gates with fewer control
lines, and this make this template reduction desirable for
the synthesis of a reversible circuit.

i) ii) iii)

Fig. 5. Template 5.1: i) input template, ii) replacement gates, and iii)
input inverse template

The final representation of our circuit is shown in Fig-
ure 6. It is here that we see the circuit has been reduced
to only 5 gates along with the a and c crossing over.



cba c2b2a2 c3b3a3 c4b4a4 c5b5a5 c6b6a6 c7b7a7 c8b8a8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1
1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0
1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0
1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1

→ Tof(c; a) → Tof(a; c) ← Tof(b; a) ← Tof(c, a; b) ← Tof(a, b; c) → Tof(c; a) → Tof(c, a; b)

TABLE IV
BIDIRECTIONAL ALGORITHM AFTER INITIAL GATE APPLICATION

Impressively, by the use of the bidirectional realization
algorithm and template matching, we have been able to
reduce our circuit representation of {5, 2, 0, 4, 7, 3, 1, 6}
from 11 gates down to 5 gates with a swap of the a and
c lines.

a

b

c

a0

b0

c0

Fig. 6. Circuit after template matching reductions

VI. CONCLUSION

We have reviewed and demonstrated the template
matching algorithm of Miller et al. for the synthesis
of a reversible function into a near optimal reversible
circuit [13]. The algorithm as shown only uses a limited
set of Toffoli gates to represent the circuit. In later work,
using gates such as the Fredkin [18], it has been shown
that further reduction of gate counts can be achieved [5].
The largest hinderance of the presented algorithm is the
exponential costs in time and size once functions with
larger input/output are considered. Techniques such as
the application of Reed-Muller decomposition [12] hold
potential for providing improvements that will allow this
technique to synthesize a larger reversible functions.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Research and Development, vol. 5, pp. 183–191,
1961.

[2] C. Bennett, “Logical reversibility of computation,” IBM J. Re-
search and Development, vol. 17, pp. 525–532, 1973.

[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[4] R. C. Merkle, “Two types of mechanical reversible logic,” Nan-
otechnology, vol. 4, pp. 114–131, Apr. 1993.

[5] D. Maslov, G. W. Dueck, and D. M. Miller, “Fredkin/toffoli tem-
plates for reversible logic synthesis,” in International Conference
on Computer-Aided Design (ICCAD’03). San Jose, California,
USA: IEEE Computer Society / ACM, Nov. 2003.

[6] T. Toffoli, “Reversible computing,” MIT Lab for Comp. Sci,
Tech. Rep., 1980.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
“Reversible logic circuit synthesis,” in International Conference
on Computer Aided Design (ICCAD), San Jose, California, USA,
Nov. 2002, pp. 125–132.

[8] K. Iwama, K. Kambayashi, and S. Yamashita, “Transformation
rules for designing cnot-based quantum circuits,” in 39th Design
Automation Conference (DAC). IEEE, June 2002, pp. 419–424.

[9] D. Maslov and G. W. Dueck, “Reversible function synthesis with
minimum garbage outputs,” in International Symposium on Rep-
resentations and Methodology of Future Computing Technologies
(RM2003), Trier, Germany, Mar. 2003.

[10] D. M. Miller and G. W. Dueck, “Spectral techniques for re-
versible logic synthesis,” in International Symposium on Repre-
sentations and Methodology of Future Computing Technologies
(RM2003), Trier, Germany, Mar. 2003.

[11] D. Maslov, G. W. Dueck, and D. M. Miller, “Transformation-
based synthesis of networks of toffoli/fredkin gates,” in CCECE
2003 – CCGEI 2003 Proceedings, vol. 1. Montreal, Canada:
IEEE Canada, May 2003, pp. 211–215.

[12] A. Agrawal and N. K. Jha, “Synthesis of reversible logic,” in
Design, Automation and Test in Europe (DATE), Feb. 2004, pp.
21 384–21 385.

[13] D. Maslov, G. W. Dueck, and D. M. Miller, “A transformation
based algorithm for reversible logic synthesis,” in Design Au-
tomation Conference (DAC), June 2003, pp. 318–323.

[14] J. W. Bruce, M. A. Thorton, L. Shivakumaraiah, P. S. Kokate, and
X. Li, “Efficient adder circuits based on conservative reversible
logic gate,” in Computer Society Annual Symposium on VLSI,
IEEE, Ed., IEEE. Pittsburgh, Pennsylvania: IEEE, Apr 2002,
pp. 83–87.

[15] R. Feynman, “Quantum mechanical computers,” Optic News, pp.
11–20, 1985.

[16] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
“Synthesis of reversible logic circuits,” IEEE Transactions on
CAD, vol. 22, no. 6, pp. 710–722, June 2003.

[17] D. Maslov, G. W. Dueck, and D. M. Miller, “Simplification
of toffoli networks via templates,” in Integrated Circuits and
Systems Design (SBCCI), Sao Paulo, Brazil, Sept. 2003, pp. 53–
58.

[18] E. Fredkin and T. Toffoli, “Conservative logic,” International
Journal of Theoretical Physics, vol. 21, pp. 219–253, 1982.


