
The Autocorrelation Transform and its Application to the Classification of
Boolean Functions

J. Rice
Dept. of Math & Computer Science

University of Lethbridge
4401 University Dr. W. Lethbridge, AB, Canada

j.rice@uleth.ca

Abstract

Classification of Boolean functions is a known problem
in digital logic. There are far too many possible Boolean
functions to examine each one, and so we attempt to classify
similar functions together into groups, or classes. This pa-
per continues work that uses the autocorrelation transform
to determine a classification technique. Some new consid-
erations are raised and additional analysis of the autocor-
relation classes is presented.

1. Introduction

When considering Boolean functions of n variables,
there exists 22n

different ways of assigning input and output
values, and thus there are 22n

possible Boolean functions.
This number quickly becomes far too large to manage in
any useful way. One way to handle this problem is to group
or classify functions. The goal is to identify similar charac-
teristics within these classes such that analysis or synthesis
efforts applied to a single representative of each class can
be leveraged over all other members of the class.

Well-known techniques in this area include NPN classi-
fication and spectral classification [3]. In this work we ad-
dress the autocorrelation transform and its use in classifying
Boolean functions. This paper continues work previously
introduced in [10] and [8].

2. Background

2.1. The Autocorrelation (AC) Transform

In many cases a transform such as the Hadamard, Walsh,
or Rademacher-Walsh is used to convert a Boolean func-
tion from the functional domain to the spectral domain [3].
In this work we suggest the use of the (AC) transform for

this purpose. The AC transform has recently been revis-
ited by a number of authors, including Rice et al. [8, 9, 11],
Tomczuk [13], and Karpovosky et al. [5, 6, 7, 12]. Like
the more well-known Walsh transform, this transform can
also be used to re-express a function in the spectral domain.
The AC transform is based on the general cross-correlation
(convolution) function between two given functions f and g
at a distance τ . When f(X) = g(X), the resulting equation
gives the cross-correlation of a function with itself, trans-
lated by τ , the coefficients of which are referred to as the
AC coefficients of the function. The AC function is thus
defined as [4]

Bff (τ) =
2n−1∑
v=0

f(v) · f(v ⊕ τ) (1)

where the superscripts ff are generally omitted, except to
distinguish between coefficients for different functions.

For multiple output functions a second step must be per-
formed to combine the AC function for each of the individ-
ual functions into the total AC function. In this work we
are considering only single-output functions, and so do not
need to perform this step. We are assuming the use of {0, 1}
encoding of the function’s output for these definitions, how-
ever Equation 1 may also be applied if {+1,−1} encoding
of the function outputs is used. In this case the resulting AC
coefficients are referred to as Cff (τ), or C(τ).

An example illustrating the use of Equation 1 may be
useful. Let us examine the function f(X) = x3 + x2x1;
then the truth table for f is shown in Table 1. If we wish
to compute the AC coefficient for τ = 001 then we expand
Equation 1 as follows:

B(001) =
2n−1∑
v=0

f(v) · f(v ⊕ 001)

= [f(000) · f(000⊕ 001)] + · · ·
+ [f(111) · f(111⊕ 001)]



Z Y B(τ) C(τ)
x3x2x1 {0, 1} {+1,−1} τ {0, 1} {+1,−1}

000 0 1 000 5 8
001 0 1 001 4 4
010 0 1 010 4 4
011 1 -1 011 4 4
100 1 -1 100 2 -4
101 1 -1 101 2 -4
110 1 -1 110 2 -4
111 1 -1 111 2 -4

Table 1. The output vectors and AC coeff-
cient vectors in both {0, 1} and {+1,−1} en-
coding the function f(X) = x3 + x2x1.

= [f(000) · f(001)] + · · ·+ [f(111) · f(110)]
= [0 · 0] + [0 · 0] + [0 · 1] + [1 · 0]

+ [1 · 1] + [1 · 1] + [1 · 1] + [1 · 1]
= 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1
= 4

We note that in performing this computation we assume the
use of the logical exclusive-or operator to combine v and τ
and the use of the arithmetic multiplication and summation
operators to combine the subsequent values. Table 1 lists
the resulting AC coefficients for f for all values of τ .

2.2. Classification

There are many techniques for classification, but in gen-
eral a classification of a set of functions F into classes
Q1, Q2, . . . , Qp based on transformations T1, T2, . . . , Tm is
such that

F = Q1 ∪Q2 ∪ · · · ∪Qp

and
Qi ∩Qj = ∅.

Two functions fi and fj , i 6= j are in the same class Qk if
and only if fi can be obtained from fj by the application of
some appropriate set of transformations from T1, . . . , Tm.
No set of transformations applied to a function in Qi can
lead to a function in Qj for any i, j ∈ {l, . . . , p} where
i 6= j.

3. Meaning

It is useful to briefly consider the meaning of the AC
transform and also of the coefficients which result when ap-
plying it to a Boolean logic function. Unlike any other type
of measure for Boolean logic functions, each AC coefficient

provides a measure of similarity between the function un-
changed and the same function shifted, or translated by a
given amount. This alternative view of the function allows
us to identify various properties of the underlying function,
such as

• whether or not the function is a trivial function (i.e.
f(X) = 1 or f(X) = 0),

• sparse functions,

• independence of one or more variables, and

• exclusive-or decompositions, e.g. f(X) = f∗(X) ⊕
xi,

as well as testing for symmetries within the function. For
instance the function trivial f(x3, x2, x1) = 1 has an AC
vector of C = [8, 8, 8, 8, 8, 8, 8, 8, 8], where every value is
2n, and the function f(x3, x2, x1) = x1x2x3 has an AC
vector of C = [8, 4, 4, 4, 4, 4, 4, 4], where every value is
2n − 4 except for C(0). These and other properties are
detailed and proven in [11] and [8].

Many classification techniques discard the signs of the
coefficients when classifying Boolean logic functions, but
it is through analysis of the meaning of the coefficients that
we have decided in this case to retain sign information. For
example, f(x3, x2, x1) = 1 has all coefficients equal to 8
(2n), indicating a great deal of similarity at all distances
(values of τ ). A function f(x3, x2, x1) = x1⊕x2⊕x3 has a
coefficient vector of C = [8,−8,−8, 8,−8, 8, 8,−8]. This
shows that at some distances the function is internally very
similar, but at others it is very different. Taken individually
this may not be particularly significant, but when comparing
one function with another there is a greal deal of difference,
and discarding the sign information would result in the loss
of this information.

4. Classes

Work in [8] found that the AC classes can be defined by
four invariance operations:

1. Permutation of any input variables xi and xj , i, j ∈
1..n, i 6= j. This results in the AC coefficients corre-
sponding to these variables also being permuted.

2. Negation of any input variable xi, i ∈ 1..n. This has
no effect on the AC coefficients.

3. Negation of the output of the switching function. Out-
put negation is an invariance operation for the AC
classes only when {+1,−1} encoding is used. In this
case there is no effect on the AC coefficients. If {0, 1}
encoding is used then

Bf
∗f∗(τ) = Bff (τ)− 2B f f (0) + 2n



X f(X) g(X) τ Cff (τ) Cgg(τ)
000 0 0 000→ c0 8 8
001 0 0 001→ c1 -4 -4
010 1 0 010→ c2 -4 4
011 0 1 011→ c12 4 -4
100 0 0 100→ c3 -4 -4
101 1 1 101→ c13 4 4
110 0 1 110→ c23 4 -4
111 1 0 111→ c123 -4 4

Table 2. An example showing how replacing
x1 with x1⊕x2 results in the swapping of coef-
ficients c2 and c12 and of coefficients c23 and
c123.

where f∗(X)
4
= f(X).

4. Replacement of any input variable xi with xi ⊕ xj ,
i, j ∈ 1..n, i 6= j. This has the result again of swap-
ping certain AC coefficients. Each individual AC co-
efficient can be referred to as C(τ), or alternatively as
cα where α consists of the variables corresponding to
1s in the binary expansion of τ . Table 2 illustrates how
this notation corresponds to each value of τ .

Given this notation, if we then label the variable be-
ing replaced as xi and the replacement operation as
xi⊕xj then the AC coefficients associated with xi are
not affected, while coefficients associated with xj are
exchanged with those associated with both xi and xj ,
i.e. cxj ⇔ cxixj and bxj ⇔ bxixj

For example, the function f(X) = x3x2x1 +x3x1 has
the truth table and coefficient vector shown in Table 2.
If we construct a function from f(X) by replacing x1

with x1 ⊕ x2 we get g(X) = x3x2x1 + x3x2x1 +
x3x2x1, whose output and coefficient vectors are also
shown in Table 2. We can see that the coefficients c2
and c12 have been exchanged, as well as coefficients
c23 and c123.

For the purpose of classification we use only the {+1,−1}
representation for the AC coefficients.

4.1. Connections between the Spectral and
AC Classes

Those familiar with NPN and spectral classification tech-
niques will realize that the first three invariance operations
identified in the previous section are the three operations
used in NPN (negation of inputs, permutation and negation
of output) classification, and that all four invariance opera-
tions are also used in spectral classification techniques [3].

The spectral classes, however, are also defined by a fifth
invariance operation. This fifth spectral invariance opera-
tion consists of replacing f(X) with f(X) ⊕ xi. Like out-
put negation, this operation has a very different result on
the AC coefficients depending on which encoding has been
chosen. This operation involves combining the function’s
output with one of the inputs using the XOR operator. The
resulting effect on the AC coefficients can be stated as fol-
lows: if g∗(x) = g(x)⊕ xi, i ∈ {1, ..., n}, then

Cg
∗g∗(τ iα) = −Cgg(τ iα) and

Cg
∗g∗(τ iα) = Cgg(τ iα) ∀ α such that i /∈ α.

Note that iα refers to a binary expansion of τ such that there
is a 0 in the ith bit while the remaining n − 1 bits have the
value α.

There is clearly a tight coupling between the spectral and
AC classes, as the invariance operations defining each clas-
sification are similar. Given this information, if two func-
tions are both in the same AC class, does this imply that
they are both in the same spectral class and vice versa?

Let us define two functions f1(X) and f2(X) such that
f1(X) and f2(X) are in the same AC class. Then by defi-
nition we know that either

f1(X) = f2(X∗) or
f1(X) = f2(X∗)

where X∗ represents the inputs X modified by one of the
three autocorrelation invariance operations that affect the
inputs. The last invariance operation affects the output, and
is negation, hence the two options given above.

We know that f2(X) and f2(X) are in the same spec-
tral class, as output negation is one of the spectral invari-
ance operations. We also know that all three of the re-
maining autocorrelation invariance operations are also spec-
tral invariance operations, so then if f1(X) = f2(X∗) or
f1(X) = f2(X∗) then they must be in the same spectral
class, by definition.

Now let us redefine our functions such that f1(X) and
f2(X) are known to be in the same spectral class. Then
f1(X) = f∗∗2 (X∗) where ∗∗ represents a type (iii) (output
negation) or type (v) (replacement of the output with the
exclusive-or combination of the output and an input), and ∗
represents a type (i) (permutation), type (ii) (input negation)
or type (iv) (replacement of an input with the exclusive-or
combination of that input and another input) spectral invari-
ance operation. Then either the two functions are in the
same autocorrelation class (if the type (v) invariance opera-
tion is not used) or they are in a different class. If they are
in a different class, then we can narrow down which classes
they may belong to, as certain AC classes are related to each
other by the type (v) transformation, as discussed in Sec-
tion 4.2. This further implies that if the type (v) operation



is also applied and one examines only the magnitude of the
resulting AC coefficients, then the resulting smaller set of
classes is identical to the spectral classes. Indeed, this can
be seen in Table 4.

4.2. Effect of fifth spectral invariance oper-
ation on the AC Classes

Each AC class defined by the four invariance operations
may be related to one or more other classes through the
application of the fifth spectral operation. Identification of
these related classes is relatively straightforward, since the
only difference in AC values between the classes is the sign
of the values. For example, let us examine the functions
f(X) = x3+x2x1 and g(X) = x3x1+x3x2x1 where g(X)
is generated by replacing the output f(X) with f(X)⊕ x1.
The AC vectors for each of these functions are as follows:

Cff = [8 4 4 4 −4 −4 −4 −4] and
Cgg = [8 −4 4 −4 −4 4 −4 4]

Of note in this example is the fact that the only differ-
ence between the two spectra occurs in the sign, and that
these differences occur only where the value of τ contains
a 1 in the x1 position (again, assuming a variable ordering
of x3, x2, x1). In addition, Table 4 illustrates how certain
classes are related through the application of this operation.

4.3. Selection of Canonical Representatives

The selection of canonical representatives for the AC
classes is described in [8] and [10]. In general we select
a representative function for each class such that the first
order coefficients are the highest valued, followed by sec-
ond order, and so on. Within each order the values decrease
such that cn has the highest value, followed by cn−1, and
continuing down to c1.

As detailed in [10] this ordering was chosen to coincide
with the canonical spectrums for the spectral classes, which
were devised such that the canonical representative would
have an optimum synthesis in terms of threshold logic [1].
We can draw some similar conclusions for the AC classes.
The highest possible AC coefficient value is 2n, and if that
value appears for a particular first order coefficient this indi-
cates that the function is independent of the corresponding
variable [8]. One can extend this to say that the higher the
value for a particular first order coefficient, the less depen-
dent the function is on that particular variable. This could
be useful in the context of reversible logic synthesis, where
one technique requires identification of variables that ap-
pear more or less frequently in the cubelist describing the
function [2].

Table 3 in the Appendix lists the canonical AC class rep-
resentatives for n ≤ 4. In this work we chose to retain

sign information; however, if we chose to discount the sign
information then the resulting reduced set of canonical AC
spectra is shown in Table 4. It should be noted that this re-
sults in the same number of classes for n ≤ 4 as does the
spectral classification technique.

5. Uses

5.1. Logic Synthesis from Representative
Implementations

As suggested for the spectral classes, the intent of the
AC classes is that an implementation can be synthesized for
a canonical representation of a class, and then additional
functions from the same class can be synthesized by adding
logic to the design for the canonical function. For exam-
ple, the function f(X) = x1x2 + x1x3 + x2x3 is a very
desirable function, as it is totally symmetric. If we define
f∗ to be some function in the same AC class as f , then the
AC coefficients may be used to identify how logic may be
added to convert f(X) into f∗(X). We point out that f(X)
is very likely to have an efficient implementation due to the
symmetry properties it possesses, while f∗(X) may or not
may not possess the same properties. Figure 1 illustrates
such a situation.

f(X) f*(X) 
x 2 

x 3 

x 1 

Figure 1. The additional logic required to con-
vert f into f∗.

There is, of course, one problem; the input negation in-
variance operation has no effect on the AC coefficients,
meaning that two functions may have the same AC coef-
ficient but actually be separate functions, one with negated
literals and the other with non-negated literals. Work devel-
oping an algorithm for this process must take this factor into
account, either disregarding whether positive or negative lit-
erals are used in the functions, or by performing some sort
of verification at each stage of the algorithm to determine if
the correct function has been synthesized.

5.2. Identification of Useful Properties

In addition to the above application the AC classes may
help identify or rule out a variety of useful properties such
as degeneracy, symmetry, self-duality and sparseness.

Degeneracy Degeneracy refers to a function being inde-
pending of one or more of the variables listed. This is easy



to identify using the AC coefficients, as any first order coef-
ficient (a coefficient whose value of τ contains only a single
1) with a value of 2n signifies that the function is indepen-
dent of that variable. For n ≤ 4 we have, referring to the nu-
meric labeling used in Table 3, classes 1–6 each containing
functions possessing some degree of degeneracy. In fact,
as mentioned in Section 4.3 the canonical representative for
each of these classes is guaranteed to exhibit the highest de-
gree of degeneracy possible for the class.

Symmetry Although in practical terms the number of to-
tally symmetric functions is small, there are a variety of
ways in which a totally symmetric function can be de-
fined. For instance, a function whose only true minterm
is x4x3x2x1 is totally symmetric, and so is the function
f(X) = x1+x2+x3+x4, which has 2n−1 true minterms.
We can enumerate the types of functions which are totally
symmetric combinatorically for n ≤ 4. Initial investiga-
tions seem to suggest that most classes can contain totally
symmetric functions, with the exception of class 9.

Self-Duality A self-dual function is one for which
f(X) = f(X) holds true. It can be shown that such a func-
tion must have 2n−1 true minterms. This significantly re-
duces the number of classes that can contain self-dual func-
tions, and in fact in Table 3 only classes 2, 4, 13 and 15 can
contain self-dual functions.

Sparseness A function whose output vector contains a
relatively small number of 1s can be said to be sparse. If
we define sparseness as containing 2n−2 or fewer 1s, then
this can also be identified through the AC coefficients. [8]
states that a function with all coefficients C(τ) = 2n − 4
except C(0) either has exactly one true minterm or exactly
one false minterm. This is the situation for class 8. This
has also been extended to functions having exactly two true
(false) minterms, and ongoing work is examining general-
izations for 2n−2 true (false) minterms.

6. Conclusions & Future Work

In this paper we present some additional considerations
relating to the use of the AC coefficients in formulating a
classification technique for Boolean functions. The pro-
posed classes are closely related to the well-known spectral
classes, but we retain sign information so that valuable data
on the internal structure of functions is not lost. Work on
analysis of these classes is ongoing, and other useful prop-
erties such as unateness, monotonicity and decomposability
are being considered.

References

[1] C. Edwards. The application of the Rademacher-Walsh
transform to Boolean function classification and threshold
logic synthesis. IEEE Transactions on Computers, C–
24(1):48–62, Jan. 1975.

[2] K. Fazel, M. Thornton, and J. E. Rice. ESOP-based Toffoli
Gate Cascade Generation. In Proceedings of the IEEE Pa-
cific Rim Conference on Communications, Computers and
Signal Processing (PACRIM), pages 206–209, 2007. Aug.
22–24 2007, Victoria, BC, Canada, IEEE Press.

[3] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Tech-
niques in Digital Logic. Academic Press, Inc., Orlando,
Florida, 1985.

[4] M. Karpovsky. Finite Orthogonal Series in the Design of
Digital Devices. John Wiley & Sons, 1976.

[5] M. G. Karpovsky and E. S. Moskalev. Utilization of autocor-
relation functions for realization of systems of logical func-
tions. Automata. and Remote Control, 31(2):243–250, Feb.
1970. Downloaded from http://mark.bu.edu/resume.htm.

[6] M. G. Karpovsky and P. Nagvajara. Functions with
flat autocorrelation and their generalizations. In Pro-
ceedings of the 3rd International Workshop on Spec-
tral Techniques, pages 56–66, 1988. Downloaded from
http://mark.bu.edu/resume.htm.

[7] M. G. Karpovsky, R. Stancovic, and J. Aastola. Reduc-
tion of sizes of decision diagrams by autocorrelation func-
tions. IEEE Transactions on Computers, pages 592–607,
May 2003.

[8] J. E. Rice. Autocorrelation Coefficients in the Representa-
tion and Classification of Switching Functions. PhD thesis,
University of Victoria, 2003.

[9] J. E. Rice. On the use of autocorrelation coefficients in the
identification of three-level decompositions. In Proceedings
of the International Workshop on Logic Synthesis (IWLS),
pages 187–191, 2003.

[10] J. E. Rice and J. C. Muzio. Use of the autocorrelation func-
tion in the classification of switching functions. In Proceed-
ings of the Euromicro Symposium on Digital System Design:
Architectures, Methods and Tools (DSD), pages 244–251,
2002.

[11] J. E. Rice, J. C. Muzio, N. Anderson, and R. Jansen. Proper-
ties of autocorrelation coefficients for single-output switch-
ing functions. in preparation, 2009.

[12] R. S. Stankovic, M. G. Karpovsky, and J. T. Aastola. Re-
duction of the number of coefficients in arithmetic expres-
sions by autocorrelation functions. In Proceedings of the
2004 International Workshop on Spectral Methods and Mul-
tirate Signal Processing (SMMSP), 2004. Downloaded from
http://mark.bu.edu/resume.htm.

[13] R. Tomczuk. Autocorrelation and Decomposition Methods
in Combinational Logic Design. PhD thesis, University of
Victoria, 1996.



A Canonical AC Class Representatives, n ≤ 4

Table 3 lists the 18 canonical class representatives for the AC classes for n ≤ 4. It should be noted that there are 8 spectral
classes for n ≤ 4.

class
no.
1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
2 16 16 16 16 -16 16 16 -16 16 -16 -16 -16 -16 -16 16 -16
3 16 16 16 0 0 16 0 0 0 0 0 0 0 0 0 0
4 16 16 0 0 0 0 0 0 0 0 0 -16 0 0 0 -16
5 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6 16 16 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -8
7 16 12 12 12 -12 12 12 -12 12 -12 -12 -12 -12 -12 12 -12
8 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
9 16 12 12 4 4 12 4 4 4 4 4 4 4 4 4 4
10 16 12 12 4 -4 12 4 -4 4 -4 -4 -4 -4 -4 4 -4
11 16 12 4 4 -4 4 4 -4 4 -4 -4 -12 -4 -4 4 -12
12 16 8 8 8 0 0 8 0 8 0 0 0 0 0 8 0
13 16 8 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -16
14 16 8 8 0 0 8 0 0 0 0 0 -8 -8 0 0 -8
15 16 8 8 0 0 0 0 0 0 0 -8 -8 -8 0 0 -8
16 16 4 4 4 4 4 4 -4 -4 4 -4 -4 -4 4 4 4
17 16 4 4 4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4
18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 0111 1011 1101 1110 1111 τ

Table 3. The canonical representatives for the n ≤ 4 AC classes in {+1,−1} notation.

class
no.
1,2 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
3,4 16 16 16 0 0 16 0 0 0 0 0 0 0 0 0 0
5,6,13 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7,8 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
9,10,11 16 12 12 4 4 12 4 4 4 4 4 4 4 4 4 4
12,14,15 16 8 8 8 0 0 8 0 8 0 0 0 0 0 8 0
16,17 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 0111 1011 1101 1110 1111 τ

Table 4. The canonical representatives for the n ≤ 4 AC classes in {+1,−1} notation, but with all sign
information removed.


