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Abstract

Two methods for Toffoli gate cascade synthesis of re-
versible logic circuits are presented. One is based on pre-
vious work [3], utilizing an ESOP minimization technique
and then applying template-matching [10]. The other is
based on a QMDD representation of a Toffoli cascade and
determining an ordering that implements the desired func-
tion. Experimental results are presented showing the feasi-
bility of both techniques.

1. Introduction

Reversible computing is becoming a more and more pop-
ular area of research. One reason for this is that power con-
sumption is becoming a large factor in many devices, while
another is the growing interest in quantum computing. Ben-
nett [2] showed that for a circuit to not dissipate power due
to information loss, it must be reversible. Some researchers
such as Frank [4] state that a computer based on reversible
logic operations should be able to reuse a fraction of the
signal energies that comes close to 100%, a result first iden-
tified in [7]. In addition to this desirable property is the
known relationship between reversible and quantum com-
puting; since all quantum gates are reversible, reversible
computing can be considered a special case of quantum
computing [14]. Many researchers believe that logic syn-
thesis for classical reversible circuits is a first step towards
synthesis of quantum circuits [17].

The classic synthesis problem involves translating a
specification or description of a function into some descrip-
tion of a circuit implementation. For reversible logic there

are many suggested solutions to this in the literature, in-
cluding [3, 10, 5] and [6]. The problem for many of these
techniques lies in the problem of how to represent the func-
tion to be synthesized, either initially or during processing.
Most of them require an input specification whose size is
exponential in the number of variables.

This paper presents two approaches to reversible logic
synthesis, both resulting in a cascade of generalized Toffoli
gates. The first approach (Method 1) takes two previously
published techniques and applies them in sequence. The
first of these, introduced in [3], synthesizes a function rep-
resented as an exclusive-or sum-of-products (ESOP) to a
cascade of reversible Toffoli gates. This technique is one of
few in the literature that bases its starting representation and
intermediate manipulation on a list of cubes (or products)
rather than a truth table, and also allows for the initial circuit
specification to be irreversible. We then post-process the
output of this technique with the template-matching tech-
nique proposed in [11] and refined in [10]. As noted in [3]
the initial ESOP-based technique shows a clear trade-off
between synthesis speed and quality of the results. That
is, while the algorithm performs very quickly, resulting cir-
cuits often have more gates than the known optimal solu-
tions. Template-matching [10] is a technique that can take a
non-optimal reversible specification and optimize it through
the use of matching portions of the reversible cascade with
known-optimal sub-circuits, referred to as templates. The
goal of this work is to determine if such a technique can
produce closer to optimal circuits in a reasonable amount of
time.

The second approach (Method 2) uses row moves to sort
rows of a given 0, 1 permutation matrix until the result is the
identity. Such a permutation matrix is one way to represent
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a reversible logic function. The motivation behind this ap-
proach is that there is a great deal of research in Computer
Science on how to do sorting, thus it seems reasonable to
think that reducing the difficult problem of reversible logic
synthesis to a sorting problem can shed some light on how
best to approach our problem. We show that for a given pair
of rows in the permutation matrix a responding reversible
logic gate cascade can be generated that moves row i to row
j. Based on this we can then apply sorting algorithms to
reversible logic synthesis problems. Since the size of the
permutation matrix is exponential in the number of depen-
dent variables, we implement the row swapping operations
as graph operations over the Quantum Multiple-Valued De-
cision Diagram (QMDD) data structure [12]. The use of
QMDDs allows for most relatively large reversible circuit
specifications to be represented in a compact manner, and as
an added bonus the row-swapping operation is implemented
in a very efficient manner using the QMDD software.

The paper progresses as follows: Section 2 provides
some background on reversible logic in general in prepa-
ration for the detailed discussions of the various techniques
in Sections 3 and 4. Section 5 gives an overview of related
work. Experimental results are presented in Section 6, fol-
lowed by a discussion of these results.

2. Background

In this field when one refers to a reversible function we
are referring to a function that is bijective. For example,
Figure 1 gives two functions, one of which (A) is reversible
while the other (B) is not. A logic gate can then be consid-
ered reversible if the function it computes is bijective [17],
and a circuit is considered reversible if it consists entirely
of reversible gates.

x y x′ y′

00 00
01 10
10 01
11 11

x y f(x, y)
00 0
01 0
10 0
11 1

(A) (B)

Figure 1. (A) An example of a reversible func-
tion. (B) An example of a non-reversible func-
tion.

While many reversible gates have been defined, this
work uses only generalized Toffoli gates, of which the NOT
gate is a special case. The symbols for a variety of Tof-
foli (TOF) gates are shown in Figure 2. The NOT gate has
the usual behaviour; that is (x) → (x ⊕ 1) where ⊕ de-
notes the exclusive-or operator. This can be considered to
be a TOF1 gate, or a Toffoli gate with one input. A Toffoli

x !x
x
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x
x ⊕ y

x
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x
y
xy ⊕ z

(A) (B) (C) (D)

Figure 2. (A) NOT gate, or TOF1 gate. (B)
TOF2 gate. (C) TOF3 gate. (D) The general-
ized Toffoli gate T (0, 1, 2, 1).

gate with more than one input uses the first n − 1 inputs
as control inputs. For example, a TOF2 gate has behaviour
(x, y) → (x, x ⊕ y) where x is considered a control input
as it controls the effect of the gate on the input y. This can
be extended to n inputs such that TOFn has the behaviour
(x1, x2, . . . , xn) → (x1, x2, . . . , xn−1, x1x2 · · ·xn−1 ⊕
xn).

For the second method presented in this paper we allow
a generalized form of Toffoli gates in that a control line may
be asserted positively or negatively. To denote such a Toffoli
configuration we use the notation T (i1, i2, . . . , in) where ij
denotes the jth line in the Toffoli gate. The behavior of each
line is denoted as follows:

• -1 is unused,
• 0 denotes a negative control line,
• 1 denotes a positive control line, and
• 2 denotes the target line.

In Figure 2(D), the control lines with a white dot are neg-
atively asserted while the black dots denote positively as-
serted control lines.

3. Method 1: ESOP-based Toffoli Gate Cas-
cade Generation with Template Matching

In this section we describe the ESOP-based method for
generating a Toffoli gate cascade. This is the first step in a
two-part process, the second of which is applying template-
matching, described below in Section 3.3.

3.1. ESOPs

An exclusive-or sum-of-products (ESOP) representation
is a variation on the more traditional sum-of-products (SOP)
representation. Both are two-level representations used
in traditional logic synthesis. For example the function
f(x, y, z) = xy+yz is shown in a SOP form. If we replace
the OR (+) operator with exclusive-or (⊕) then the function
becomes an ESOP, for example g(x, y, z) = xy ⊕ yz. The
reader is directed to [16] for more information.
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3.2. ESOP-based Generation of Toffoli Gate
Cascades

Because the exclusive-or operator is, by its nature, a re-
versible operator, a function thus expressed as an ESOP can
easily be converted to a reversible cascade of gates. The
procedure used in [3] is described as follows. We assume
a circuit is given in an ESOP cube-list representation. The
circuit to be generated will require 2n+m signals where n
is the number of inputs to the function and m is the number
of outputs. In the best case for a truly reversible function
m = n, but in practice many of the benchmarks used are
non-reversible functions with extra (garbage) outputs added
to allow for a reversible implementation. More discussion
of this can be found in Section 6.3. The 2n signals are re-
quired in order to represent each input in both its regular and
complemented form. The algorithm then generates a Toffoli
gate for each cube of each output in the list of ESOP cubes.
The basic algorithm is outlined in Figure 3. An example

basicCascadeGen(esop)
cascade.toffoliList = empty;
//create signals
foreach i in esop.inputs
cascade.addQubit(i, positive);
cascade.addQubit(i, negative);

foreach o in esop.outputs
//add a constant 0 qubit for each output
cascade.addQubit(o, constant 0)

//create TOF gates
foreach c in esop.cubes
foreach o in esop.outputs

If c in onset(o)
//add a toffoli gate
t = new ToffoliGate
t.target = cascade.getQubit(output)
foreach literal in c

t.addControl(cascade.getQubit(literal))
cascade.addToffoli(t)

Figure 3. Algorithm for generating a Toffoli
cascade from an ESOP representation.

of an ESOP cube list and the resulting Toffoli cascade are
shown in Figure 4. A number of optimization techniques
have been included in this method, most notably to reduce
the number of input signals required. Details of these are
given in [3].

3.3. Template Matching

The basic concept of reversible logic synthesis via
template-matching was introduced in [11]. In Miller,
Maslov and Dueck’s original synthesis method they found
that the resulting circuits produced gate sequences that
could be replaced with shorter sequences that gave the same
result. These substitutions evolved into a series of templates
consisting of the sequence of gates to be replaced and the

a
!a
b
!b
c
!c
0
0

X
X
X
X
X
X
sum
cout

(A) (B)

Figure 4. (A) ESOP cube list for a full adder.
(B) Result of ESOP mapping method as ap-
plied to the cube list in (A).

shorter sequences of gates to replace them with. An exam-
ple template is shown in Figure 5.

Figure 5. Template 2.2 as given in [11].

4. Method 2: Sorting Based Toffoli Cascade
Synthesis

In this section we describe the sorting method for gener-
ating a Toffoli gate cascade.

One way to represent a reversible function is as a permu-
tation of the rows of its truth table. For instance, Figure 6
shows a reversible function with the input rows of the truth
table labeled on the left and the resulting outputs labeled on
the right.

x y x′ y′

0 00 00 0
1 01 01 1
2 10 11 3
3 11 10 2

Figure 6. A reversible function with the per-
mutation vector (0, 1, 3, 2).

A permutation matrix is a matrix generated by taking a
m×m identity matrix and permuting the rows according to
some permutation vector. Since a permutation vector is one
way of representing a reversible function of size n then a
m×m permutation matrix (wherem = 2n) may be created
by reordering the m × m identity matrix according to the
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ordering in the permutation vector p that represents a given
reversible function.

Since it is possible to construct a reversible gate cascade
that has the effect of moving row i to row j, the problem
of constructing such a cascade becomes that of determining
the order in which rows should be moved in order to re-sort
the permutation matrix into the identity.

In general the algorithm for transforming the permuta-
tion matrix M into the identity is

while (M!=I)
(1) in M determine a row i to move to row j
(2) determine Toffoli operations T

that perform the row move

Work has not progressed a great deal on investigations for
step (1), although this is clearly an area where there are a
great deal of options. For step (2) we can accomplish a swap
of two rows that are adjacent in terms of the bit patterns
of their location with only one TOF(n) gate. For instance,
suppose we wish to move row i to row j. To determine if
a single TOF(n) gate can accomplish this, we can use the
value k = i ⊕ j. If k is a power of two then there ex-
ists a generalized TOF(n) gate that will swap the two rows.
To determine the configuration of the gate one formulates
the Toffoli configuration with the binary representation of i
then sets the (log k)th position as the target line. For exam-
ple, let us assume we have a function with 4 variables for
which we wish to swap rows 10 and 14. Then the binary
expansions for i and j are 1010 and 1110 respectively, and
k = 0100 = 4. We set the TOF(4) configuration to initially
be T (1, 0, 1, 0), and then set the value at position log k = 2
to 2 indicating the target. This results in a gate configuration
of T (1, 2, 1, 0)1.

If k is not a power of two then multiple row moves are
necessary, which will correspond to multiple Toffoli gates
in the resulting cascade. In this case we propose the use
of a Gray code sequence that transforms i to j. For any
sequential pair of rows ga and gb in the Gray code sequence,
k = ga ⊕ gb is a power of two, and g0 = i while gq = j,
where g0 is the first row in the Gray code sequence and gq is
the last row. This allows the formulation of a corresponding
Toffoli operation, and then the concatenation of the Toffoli
swaps one gets from applying the process to each sequential
pair of rows in the Gray code sequence corresponds to a
row move that moves row i to row j. For instance, in order
to move row 0 to row 7 and vice versa we would generate
a Gray code to transform the bit pattern 000 into the bit
pattern 111, and for each pair in the bit pattern formulate
the appropriate TOF(3) gate. An illustration of this process
is shown in Figure 7.

We note that the Gray code method only allows for Tof-
foli gates with a maximum number of control lines. Also,
the process described above does not necessarily swap rows,

1Recall that the positions are ordered in reverse, i.e. T (i4, i3, i2, i1).

000
001
011
111

TOF(0,0,2)
TOF(0,2,1)
TOF(2,1,1)

(A) (B)

Figure 7. (A) A Gray code sequence for con-
verting 000 into 111, and the corresponding
TOF(3) configurations for each pair of rows.
(B) The Toffoli gate cascade corresponding
to the three TOF(3) configurations in (A).

but instead will move one row to the desired position, pos-
sibly affecting other rows in the process. One way to ensure
that already sorted rows are not moved would be to ensure
that the the ith row is always ordered before the ith+1 row.
Our proposed algorithm is similar to the Miller, Maslov and
Dueck (MMD) algorithm [11] in that rows are ordered such
that no previous row move is affected by subsequent row
moves. To start, we find the row that contains a 1 in the
zeroth column. We denote this as row k. We then move row
k to row zero. In general we find the row that contains a 1
in the ith column and swap this row with the ith row. We
will refer to this algorithm as the Ordered Row Sorting algo-
rithm. Figure 8 illustrates how the Ordered Row algorithm
sorts rows. In this figure the boxes represent 1s while the
blank spaces represent 0s, providing a pictorial representa-
tion of the permutation matrix being sorted to the identity.

Figure 8. An illustration of the processing
carried out by the Ordered Row algorithm.

Another sorting strategy takes advantage of the Quantum
Multiple-Valued Decision Diagram (QMDD) data struc-
ture [12] and its ability to recursively divide a matrix into
quadrants. The QMDD data structure is much like a BDD
in that it reuses isomorphic subtrees to minimize memory
usage. Figure 9 shows an example QMDD. In the QMDD
approach an arbitrary matrix M is first sorted such that we
attain the form [

A 0
0 B

]
If A = B we then only need to sort A. While we sort A
we can choose Toffoli gates that will not only sort A, but
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Figure 9. The QMDD structure.

sort B at the same time. We can also recursively sort each
sub block similarly. Figure 10 illustrates this approach to
sorting the permutation matrix rows.

Figure 10. An illustration of the processing
carried out by the QMDD sorting algorithm.

5 Related Work

Due to the recent interest in reversible logic there are a
wide variety of synthesis techniques in the literature. Here
we briefly mention techniques that are related to the ap-
proaches detailed in this paper.

5.1 ESOP-related work

The ESOP-based method proposed in [3] and built
upon in this paper is similar to techniques suggested by
Perkowski et al. in [6] and an earlier work [13]. The more
recent of these works requires a factorization of each of the
ESOPs representing the multiple outputs, and a new class of
reversible gates is introduced, allowing modification of two
qubits but requiring a significantly higher level of complex-
ity. This method reported achieving good results in terms
of gate numbers; for instance, in many cases they required
only one gate per product term in the ESOP representa-
tion. However the technique still requires the use of some
garbage lines, and as the authors themselves state, “[our]
cascaded realization of multi-output ESOP generates a large
number of garbage outputs and requires a large number of
input constants...”. Garbage lines are also an issue with the
work presented here, and will be further discussed in Sec-
tion 6.3.

5.2 Sorting-based approaches

As indicated in the prior section, there is some similarity
between our suggested sorting method and the well-known
method referred to as MMD [11]. The primary difference
is in the process of reorganizing the permutation vector and
thus generating a Toffoli cascade. The technique used in
MMD is quite different from our Gray code technique. It
should also be noted that the MMD technique is much more
mature, and numerous refinements such as output permuta-
tion, a bidirectional option, and control input reduction have
been added to this work. Our proposal is still in the early
stages of investigation and so refinements of this sort have
yet to be added.

6. Experimental Results

In this section we give some experimental results for
each of the methods proposed.

6.1. Method 1

The purpose of these experiments is to determine if a
post-processing step, such as template-matching, could be
used to improve the quality of the reversible circuit as gen-
erated by the ESOP-based synthesis process. Initial experi-
ments were designed to follow-up on the results given in [3],
which used a common set of irreversible functions that were
made reversible by adding garbage lines to the outputs. Un-
fortunately it soon became clear that the template-matching
program could not handle the numbers of variables in many
of these benchmarks. Thus the experiments reported here
are based on benchmarks whose total number of variables
(inputs plus outputs) are 31 or fewer. The process involved
running the ESOP-based synthesis with varying parameters.
The resulting reversible circuit from each set of parameters
were then template-matched using the program supplied by
D. M. Miller. The template-matching step was attempted
twice; once minimizing for gate count and once minimiz-
ing for quantum cost. These results use only a small subset
of 14 templates; future work will attempt to incorporate the
complete set of 220 templates. Although full data on the
experiments, including processing time, was recorded, we
do not report on the speed of the various algorithms here
since the initial experiments demonstrated quite clearly that
the ESOP-based synthesis technique is very fast, and can
complete synthesis of very large circuits (for instance, those
with more than 200 variables) in very reasonable process-
ing times [3]. The authors are not aware, at this time, of any
other reversible synthesis technique that can compete with
this approach in terms of speed and the ability to process
large functions.
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6.1.1 Gate count minimization

Table 5 shows, for each benchmark tested, the smallest
circuit size achieved in terms of Toffoli gates. We found
that when using the template-matching to minimize for gate
count, of the 71 benchmarks, 17 returned the same best re-
sult. In 26 cases the ESOP-based technique had the best
results, while in 28 cases the template-matching resulted in
the best results. In most cases there was no spectacular im-
provement. The best improvement achieved was a reduction
from 38 to 22 gates, but this was not the usual case.

An interesting phenomenon is illustrated in Table 1. This
table shows how the parameter α, as used by the ESOP-
based technique, can result in the same size of circuit, but
clearly has an effect on the subsequent template-matching
step.

num ESOP template
filename signals α tof gates tof gates
f51m.pla 22 0 151 156
f51m.pla 22 .25, .5, .75 151 174
f51m.pla 22 1 151 185
apex4.pla 28 0 5079 4950
apex4.pla 28 .25, .5, .75 5079 4993
apex4.pla 28 0 5079 5011

Table 1. Table showing how differing param-
eter values for the first step can affect the
template-matching second step.

α is used as a cost metric to determine how early on
in processing variables must be considered (see [3] for de-
tails).

6.1.2 Quantum cost minimization

The quantum cost is computed using the algorithm given in
the template-matching code supplied by Miller. This algo-
rithm is based on quantum cost values for Toffoli gates as
given in [8]. The quantum cost of a gate is determined by
how many elementary quantum gates are needed to imple-
ment the reversible gate in question. In some cases fewer el-
ementary gates may be used if there are garbage lines avail-
able for use. The reader is directed to [8] and [1] for further
details.

In this case the template-matching technique always re-
sults in a circuit with either the same or lower quantum cost
than does the initial ESOP-based processing. In fact, the
average improvement is 38%. Complete results are shown
in Table 6. Again it is worth highlighting some unexpected
results such as are shown in Table 2. In some situations, for
instance for benchmark x2.pla the quantum cost after the
initial ESOP-based step is lowest for α = 0. However, the

num ESOP template
filename signals α qc qc
x2.pla 17 0 595 426
x2.pla 17 .25, .5, .75 600 377
x2.pla 17 1 601 430

Table 2. Table showing how an increase is
quantum cost in the initial step can result
in a lowered quantum cost after template-
matching.

lowest cost after template-matching is for α = .25, .5, .75,
which initially (after ESOP processing) had the highest
quantum cost. This raises the question of what the initial
circuits looked like structurally, and how these structural
changes either helped or hindered the template-matching
process.

6.2. Method 2

The Ordered Row and QMDD algorithms were both
implemented in C++ utilizing the QMDD data structure.
Additionally the two sorting approaches were compared
against the most basic form of the MMD algorithm (no
bidirectionality, input reduction or output permutation). We
note that both of our sorting algorithms allow for the use of
the generalized Toffoli gates, whereas the MMD algorithm
ensures only positively asserted control lines are generated.
To allow for a fair comparison the cascades of generalized
Toffoli gates from our techniques are expanded to include
NOT gates. Results are shown in Table 3. Columns 1 and
2 denote the circuit under investigation and the number of
inputs. Column 3 shows results for the Ordered Row algo-
rithm, where the number of Toffoli gates found by the al-
gorithm is given as the first value, and the number of NOT
gates needed to remove negatively asserted lines is shown
as the second value. Column 4 shows similar results for
the QMDD approach. The final column shows results from
MMD.

One can see the large disparity between the MMD cas-
cade sizes and Ordered Row sorting generated cascade
sizes. The large number of gates in the row swap ap-
proaches are due to the large number of row moves that are
necessary when only moving a single row at a time. A vari-
ety of approaches to mitigate this problem are suggested in
Section 6.3.

6.3. Summary & Discussion

The link between these two approaches lies in our iden-
tification of a key problem in existing reversible logic syn-
thesis techniques: the reliance on function representations
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Ordered QMDD
Circuit signals TOF/NOT TOF/NOT MMD
2of5-b 6 10/60 10/60 18
2of5-c 6 28/130 16/124 17
2of5-dueck 6 30/146 39/212 20
Dimitri-3-new 3 10/14 9/18 8
Dimitri-3 3 6/12 8/16 6
Dimitri-4 4 20/42 18/62 22
Hayes-1 1 4/8 3/6 1
and2 2 1/0 1/0 1
cycle-b 3 9/10 6/16 3
cycle 3 15/18 6/8 3
fredkin 3 3/0 3/6 3
gray3 3 4/4 3/4 3
gray4 4 12/22 7/16 6
hard-14-a-r 3 12/8 9/24 10
hard-14-a 3 6/8 8/18 14
hard-14-b 3 8/14 10/28 9
miller3 3 7/4 5/16 5
miller4 4 15/18 7/30 7
nasty-10 3 8/16 8/22 12
nasty-11 3 8/16 8/22 12
nasty-swap 3 6/8 8/18 6
rm-2001 4 20/40 26/86 10
selector 6 5/20 5/20 11
test 3 6/8 10/22 6

Table 3. Sort-based Toffoli synthesis results.

that are exponential in size. Both of these approaches rep-
resent an attempt to avoid this problem. A brief summary
of the advantages and disadvantages of each of these pro-
posals is given in Table 4. This table clearly indicates
areas where future work must be targeted: reductions of
additional garbage lines for both techniques, and in how
to deal with non-reversible functions for the sorting-based
technique. Although the sorting-based methods did not fare
very well against the MMD algorithm we believe it is pos-
sible to formulate the MMD algorithm into a sorting frame-
work. This gives hope for the sort-based methods in the
sense that if a smarter heuristic is used to choose Toffoli
gates then smaller overall circuits can be attained. Further-

ESOP Sorting
non-reversible input yes no
non-exponential input yes no
always results in
reversible cascade yes yes

garbage lines yes no
internal representations cube-list QMDD

Table 4. A comparison of the two proposed
reversible logic synthesis techniques.

more, this could allow for much larger circuits to be syn-
thesized using the MMD technique since the QMDD data
structure would be used instead of explicit truth table repre-
sentations. The current Gray code approach provides a min-
imum number of rows to be moved, assuming only single-
row moves are permitted. We believe that forcing a lot of
rows to move at any given time is a better heuristic than only
allowing a few rows to move; in other words, it would be
better to try to find Toffoli gates that do not require a maxi-
mum number of control lines, and thus have lower quantum
cost. It should be possible to use the Gray code as a basis for
finding Toffoli cascades that allow for many rows to move.
Additionally, the number of NOT gates can be reduced if
we take into account the fact that neighboring NOT gates
may override one another.

Similarly, for the ESOP-based technique some reduction
of the garbage requirements is needed to make this tech-
nique competitive. Maslov and Dueck [9] provide a theoret-
ical minimum for the required number of garbage outputs,
and future work (as suggested in Section 7) must find some
way to approach this value using the ESOP technique.

7. Conclusions and Future Work

Two techniques for Toffoli gate cascade generation are
presented. These are very different techniques in that one
is a more mature approach and has been refined to work
well on a large number of (irreversible) benchmarks, while
the second is in the early stages of development and is thus
far restricted to small, reversible benchmarks. Because of
this further comparisons between the two are difficult at this
stage in the research.

Method 1 consists of a combination of two previously
published approaches [3, 10]. When comparing the gate
counts of circuits resulting from the ESOP technique to
those achieved by preprocessing the results using template-
matching, the ESOP technique is quite comparable. Addi-
tional tests were run using the template-matching to min-
imize for quantum cost. In this case the second step
of template-matching then improves the results by almost
40%. It is worth noting that the ESOP-based technique was
capable of processing extremely large benchmarks, and that
for this work the size of benchmarks was restricted to 31
signals in order for the template-matching step to complete
in reasonable time. Additionally, this method could be em-
ployed as the initial phase of a synthesis method that is used
to perform mapping of large and/or irreversible specifica-
tions to reversible cascades suitable for optimization using
other approaches.

There are many possibilities for future work with this
technique, including optimizing the ESOP technique to use
templates as the circuit is built. Also, the fact that the ini-
tial cascade has the property of allowing interchange of the
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position of any two arbitrary gates means that the template-
matching approach can be modified to take advantage of
this new degree of freedom, since in the MMD method the
interchanges of gate positions is limited. Further work is
needed to identify why some values of α lead to improved
template-matching results, and determine if it is possible
to identify ahead of time which functions may lead to sub-
stantially better results when template-matching is used so
as to best leverage the extra computation time. In addition
to these avenues of research, some solution to the garbage
problem must be found. Options in this area include post-
processing to “fold” garbage lines into other signal lines,
or some modification to the basic processing algorithm that
allows reuse of input signal lines for outputs. Finally, new
work has indicated that the autocorrelation coefficients may
be of use in determining variable costs (α), and may lead to
an improved cost metric [15].

Method 2 consists of two sorting-based methods for Tof-
foli cascade synthesis. We propose a technique for deter-
mining a Toffoli cascade that will move one row of a per-
mutation matrix. The repeated application of row moves
can be used to generate a Toffoli cascade for a given re-
versible specification. Although the provided sort-based ap-
proaches did not compare particularly well against a known
method (MMD [11]) we believe that with some modifica-
tions, including modified heuristics and combining adjacent
NOT gates, this method can eventually provide compara-
ble results. It may be interesting to investigate whether the
generated cascades provide good starting points for post-
processing methods such as template-matching.

Future work includes determining better sorting algo-
rithms using our row move technique, and also consider-
ing the possibility of incorporating Fredkin gates into the
sorting approach. Preliminary research has already demon-
strated the feasibility of this particular avenue of research.
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filename signals α esop template
ex1.pla 6 - 5 5
ex2.pla 6 0 7 7
ex3.pla 6 - 4 4
majority.pla 6 - 5 5
xor5.pla 6 - 5 5
C17.pla 7 - 8 8
cm82a.pla 8 0 16 15
f2.pla 8 0.25 14 13
rd53.pla 8 - 20 20
con1.pla 9 0 12 13
9sym.pla 10 0 42 56
life.pla 10 - 46 60
max46.pla 10 0 41 53
rd73.pla 10 0 55 57
sqn.pla 10 0 45 45
dc1.pla 11 0 33 29
sym10.pla 11 0.25 51 66
wim.pla 11 1 17 14
z4.pla 11 0 36 37
cm152a.pla 12 - 8 11
rd84.pla 12 0 68 72
sqrt8.pla 12 0 27 28
adr4.pla 13 0 41 40
dist.pla 13 0 124 129
radd.pla 13 0 46 40
root.pla 13 1 63 62
squar5.pla 13 0.25 36 35
clip.pla 14 0 98 101
cm42a.pla 14 0 38 20
cm85a.pla 14 0 48 49
pm1.pla 14 0 38 20
sao2.pla 14 0 23 22
dc2.pla 15 0 53 53
misex1.pla 15 - 43 42
alu2.pla 16 0 71 84
example2.pla 16 0 71 84

filename signals α esop template
inc.pla 16 1 71 66
mlp4.pla 16 0 93 95
5xp1.pla 17 0.25 61 60
parity.pla 17 - 16 16
ryy6.pla 17 - 19 19
t481.pla 17 - 12 12
x2.pla 17 - 20 21
alu3.pla 18 1 60 60
dk27.pla 18 - 15 15
sqr6.pla 18 0.25 65 63
add6.pla 19 0 180 180
alu1.pla 20 1 15 16
ex1010.pla 20 0.25 1314 1269
C7552.pla 21 - 89 77
decod.pla 21 - 89 77
dk17.pla 21 0 34 29
pcler8.pla 21 - 13 13
alu4.pla 22 0 156 187
apla.pla 22 1 63 52
cm150a.pla 22 - 17 24
f51m.pla 22 0 151 156
mux.pla 22 - 16 23
tial.pla 22 0 150 174
cordic.pla 25 - 5 5
cu.pla 25 0 24 17
gary.pla 26 0 111 104
in0.pla 26 0 111 104
apex4.pla 28 0 5079 4950
cm151a.pla 28 - 26 24
misex3.pla 28 0.25 262 263
misex3c.pla 28 0 281 285
table3.pla 28 0.25 88 77
cm163a.pla 29 0 26 22
in2.pla 29 0.25 88 85
frg1.pla 31 0 26 27

Table 5. Table showing gate counts for the initial ESOP technique and subsequent template match-
ing. Only the smallest resulting circuits (when minimizing for gate count) are listed.
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filename signals α e cost t cost
ex1.pla 6 - 7 7
ex2.pla 6 0.25 153 132
ex3.pla 6 - 97 92
majority.pla 6 - 147 120
xor5.pla 6 - 7 7
C17.pla 7 - 97 83
cm82a.pla 8 0.25 167 96
f2.pla 8 1 274 152
rd53.pla 8 1 289 196
con1.pla 9 0 207 183
9sym.pla 10 0 5781 4633
life.pla 10 1 4074 3002
max46.pla 10 0 4432 3470
rd73.pla 10 0 1105 835
sqn.pla 10 0 2170 1331
dc1.pla 11 0.25 539 169
sym10.pla 11 0.25 9717 7423
wim.pla 11 0 281 153
z4.pla 11 0 674 454
cm152a.pla 12 - 219 219
rd84.pla 12 1 2598 1897
sqrt8.pla 12 0 584 352
adr4.pla 13 0.25 770 536
dist.pla 13 0.25 7414 3453
radd.pla 13 1 798 478
root.pla 13 0 3486 1586
squar5.pla 13 0 476 306
clip.pla 14 0.25 6616 3034
cm42a.pla 14 0 582 142
cm85a.pla 14 0 2228 906
pm1.pla 14 0 582 142
sao2.pla 14 0.25 7893 3652
co14.pla 15 - 3508 1764
dc2.pla 15 0.25 1956 1037
misex1.pla 15 0 1017 339
alu2.pla 16 0 5215 4346
example2.pla 16 0 5215 4346

filename signals α e cost t cost
inc.pla 16 0 2132 801
mlp4.pla 16 1 3827 2278
5xp1.pla 17 0.25 1349 722
parity.pla 17 - 32 32
ryy6.pla 17 - 4892 4892
t481.pla 17 - 237 237
x2.pla 17 0.25 600 377
alu3.pla 18 0.25 2653 1997
dk27.pla 18 1 252 190
sqr6.pla 18 0 1090 703
add6.pla 19 1 6362 3812
alu1.pla 20 1 243 243
cmb.pla 20 - 910 688
ex1010.pla 20 0 183726 53428
C7552.pla 21 - 1924 325
decod.pla 21 - 1924 325
dk17.pla 21 0 1976 1044
pcler8.pla 21 0.25 343 267
alu4.pla 22 0 48778 37760
apla.pla 22 0.25 4051 1577
cm150a.pla 22 - 844 844
f51m.pla 22 0 34244 24995
mux.pla 22 - 826 826
tial.pla 22 0 49510 38895
cordic.pla 25 0 349522 100837
cu.pla 25 0 1332 756
gary.pla 26 1 22196 7556
in0.pla 26 1 22196 7556
apex4.pla 28 0 256857 35033
cm151a.pla 28 0 966 404
misex3.pla 28 0 122557 46268
misex3c.pla 28 0 118578 45785
table3.pla 28 0 86173 17099
cm163a.pla 29 0 988 452
in2.pla 29 0 24388 7877
frg1.pla 31 0 15528 15497

Table 6. Table showing quantum costs for the initial ESOP technique and subsequent template
matching. Only the smallest resulting circuits (when minimizing for quantum cost) are listed.
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