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1 Introduction

Let P = {p17p27 s JPTL} and Q = {Q17Q27 s )pn}
be two sets of triangulated points in the plane such
that every triangle p;p;py corresponds to a triangle
4iq;jqk, t-e. the triangulations are isomorphic. We aim
to construct a differentiable homeomorphism between
the triangulated areas defined by P and Q.

A homeomorphism is a one-to-one, continuous
mapping of R? onto R? with a continuous inverse.
These continuous mappings are used in such fields as
computer graphics for mapping a rectangular image
onto a smooth or triangulated object. For this pur-
pose, piecewise linear homeomorphisms are generally
used [2, 3, 9]. However, since they are not differen-
tiable, they induce irregularities along the edges of
the triangles to which they are applied; i.e. a piece-
wise linear homeomorphism has order-0 (C°) conti-
nuity on the boundaries between the linearly trans-
formed pieces. Therefore, a homeomorphism with
higher order continuity, a differentiable homeomor-
phism, is preferable for such applications. A differen-
tiable homeomorphism is a one-to-one, differentiable
mapping of R? onto R? with a differentiable inverse.

We attempt to generate such a mapping between
two isomorphically triangulated polygons by defining
a C! grid on each triangle that maintains its C' con-
tinuity along a shared edge between two triangles.
Thus, all grid lines pass with C! continuity over all
shared edges (Figure 1). More specifically, these grid
lines perpendicularly intersect the edges of the tri-
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Figure 1: C? grid lines maintain their differentiability
when passing over edges shared by adjacent triangles.

angles. We use this grid to define a new coordinate
system, the triangular coordinate system.

Note, however, that no grid line through a vertex
of a triangle can pass over both of the intersecting
triangle edges with C* continuity. To do so, the grid
line would have to be perpendicular simultaneously
to both edges incident to the vertex, which is impos-
sible. As a result of the C° continuity of the grid
lines at triangle vertices, the homeomorphism sug-
gested in this paper will not be differentiable at these
points. Similar finite subsets of points with reduced
continuity, such as the vertices in a Delauney trian-
gulation, arise in surface interpolation [1, 4, 6, 8, 10].
Given two planar point sets, two simple polygons, or
two polygons with holes, each defined on m points,
however, producing isomorphic triangulations of the
input sets may require the addition of as many as
O(n?) vertices [2, 3, 9].

Even when we reconcile ourselves to reduced con-
tinuity at triangle vertices, three drawbacks to our
approach remain. First, the centroid of the trian-
gle is used as the source point for the grid lines, so
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Figure 2: The effect of a piecewise linear homeomor-
phism mapping P onto (). The line [, gets mapped
to lg. Triangle pipsps is isomorphic to ¢i1¢2q3, and
triangle pop3p, is isomorphic to g2q3qs.

for some obtuse triangles this construction fails. Sec-
ond, the computation of the triangular coordinates of
a point involve solving a cubic polynomial, which is
subject to robustness issues; i.e. calculation errors are
frequent due to imprecise floating point arithmetic.
Finally, there is not yet any proof of the differentia-
bility of this construction one the region bounded by
the convex hull of the point set and excluding triangle
vertices.

In the following section, we present the homeomor-
phism which we conjecture to be differentiable. We
explain the reasoning that spawned the construction
and the method of generating the actual homeomor-
phism. In Section 3 we highlight a subset of obtuse
triangles on which the homeomorphism is undefined,
while noting that obtuse triangles can cause trouble
in other domains as well (e.g. mesh generation [5]).
The remaining sections describe our current imple-
mentation of the homeomorphism and directions for
future work.

2 A New Coordinate System

When a piecewise linear homeomorphism is applied
to a triangulated polygon, each triangle undergoes
a unique linear transformation in which the trans-
formed image of a line that crosses over an edge
shared by two triangles will remain continuous but
not necessarily differentiable. For example, in Fig-
ure 2, a piecewise linear homeomorphism mapping P
onto ) will map the line [, to the line {,. Clearly, [,
is not differentiable at the point where it crosses over
the edge shared by @’s two triangles.

It is easier to see the full effect of the homeomor-

phism by examining the grid lines in P as they also
lose differentiability when mapped onto @. A coor-
dinate system that does not maintain smooth grid
lines clearly cannot support a globally differentiable
mapping. Resolving this shortcoming is the basis of
our new coordinate system, in which we will maintain
smooth grid lines between adjacent triangles. More
precisely, we will require that every grid line be per-
pendicular to the edge of a triangle at its point of
intersection with that edge. However, this is not a
simple construction, mainly because it is unclear how
to make all of the grid lines perpendicular to triangle
edges even as they approach a vertex of a triangle.

Our solution to this problem is based on the fol-
lowing construction (see Figure 3). First find the
centroid of the triangle. This point is the intersec-
tion of the three segments between each vertex and
the midpoint of the opposite edge. From the centroid,
construct line segments, [ 4, [, and [, perpendicular
to each of the three edges of the triangle. We explain
later why these segments, called center segments, are
actually grid lines.

Notice that it is possible to construct a triangle
for which one of these segments extends outside the
triangle before it intersects the line containing its re-
spective edge. For now, we will assume that this is
not the case. This limitation is discussed further in
Section 3.

Next, construct line segments, which we will call
wing segments, from each triangle vertex to the mid-
point of both visible center segments that lie on either
side of that vertex (sa1, s42, SB1, $B2, Sc1, and s¢2).
These nine segments, three center segments and six
wing segments, will be known as contour guides. We
use these contour guides to construct the grid lines
of our coordinate system.

Each grid line or contour consists of a straight line
segment ¢ and a circular arc a. The segment ¢ em-
anates from the centroid of the triangle as if it were
a polar grid line until it intersects a wing segment
(e.g. sa2). The arc a is then constructed tangent to
the line containing c at its point of intersection with
the wing segment; and from there, a curves toward
the edge of the triangle so that it is perpendicular to
that edge. Examples of these grid lines can be seen in
Figure 1. The three center segments are degenerate



Figure 3: The contour guides aid the construction of
a contour.

cases of grid lines because the arcs in these contours
are straight line segments. Notice that as these com-
posite grid lines approach a vertex of the triangle, the
radius of the resulting arc approaches zero.

All but three of the contours remain perpendicular
as they intersect the edges of the triangle. The three
degenerate contours that do not maintain this prop-
erty are those that go through the vertices of the
triangle. We conjecture the differentiability of our
homeomorphism on the C! continuity of these grid
lines. Since the continuity of the grid lines at the
vertices of the triangles is merely C° we note that
differentiability at these points is not maintained.

We use these contours to specify the coordinates
(e,p,c) of a point X within a triangle. We call this
coordinate system the triangular coordinate system.
In a set of triangular coordinates, the e-coordinate
identifies the edge of the triangle intersected by the
contour through X. The set of edge labels, 1, 2,
and 3, is therefore a sufficient domain for e. The p-
coordinate may assume any value between 0 and 1
and it indicates the position at which X’s contour
intersects edge e. This value is specified as a propor-
tion of the total length of e, e.g., if p = 0.5, then X’s
contour will intersect e at the midpoint of e. The
c-coordinate also assumes a value on the [0,1] inter-
val. This coordinate identifies X’s distance from the

centroid as measured along the contour of X and as
a proportion of the length of this contour. For exam-
ple, if X lies on an edge of the triangle then ¢ = 1
and if X is the centroid of the triangle then ¢ = 0.

By use of triangular coordinates rather than Carte-
sian coordinates, we hypothesize that a differentiable
homeomorphism can be defined between two isomor-
phically triangulated polygons P and . For a point
pin P, first find the bounding triangle of p in P’s tri-
angulation. Then, with respect to this triangle, de-
termine the triangular coordinates of p. Finally, map
the image of p in the corresponding isomorphic tri-
angle in @)’s triangulation using the same triangular
coordinates as p. Clearly this process also requires
that the edge labellings in isomorphic triangles are
isomorphic. Furthermore, as noted above, this differ-
entiability breaks down at the vertices of the triangles
where the C'! continuity of the grid lines is not main-
tained.

Although this may seem like a simple process, the
complexity of one step has been severely overlooked:
determining the triangular coordinates of a point X
is not a trivial task even with an acute triangle as in
Figure 3. If X lies within the hexagon formed by the
six wing segments of the triangle, the calculation is
simple because two points on the line segment por-
tion of the contour are known, namely X and the
centroid. However, if X lies to the outside of this
hexagon, then this computation is much more diffi-
cult, mainly because none of the properties of the
contour are readily obvious. Finding the contour in
this case involves solving a cubic polynomial. Due to
space constraints, a full explanation of this complex
calculation has been excluded from this paper.

3 Degenerate Cases

As mentioned in the last section, this construction
cannot maintain differentiability at the vertices of the
triangles. However, there exists a more substantial
limitation: in certain obtuse triangles this construc-
tion cannot be applied. It is possible to construct
a triangle in which one of the edge-perpendiculars
drawn from the centroid extends outside the triangle
before it intersects the line containing its respective
edge. For example, see Figure 4.

This flaw prompted us to try choosing a number of



Figure 4: The perpendicular constructed from the
centroid to the lower edge of this triangle extends
outside of the triangle before intersecting the line con-
taining that edge. Therefore, triangular coordinates
cannot be applied to this triangle.
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Figure 5: Given the fixed points A and B, our differ-
entiable homeomorphism can be applied to AABC if
and only if C lies in the shaded region, which extends
upwards.

different center points, such as the incenter, for which
the edge-perpendicular segments are completely con-
tained in the triangle. Each of the homeomorphisms
produced by alternate center points, however, were
non-differentiable. We conjecture that no similarly
defined homeomorphism using a center point other
than the centroid will be differentiable.

In general, there are two types of triangles in which
the contour guides cannot properly be constructed.
Triangles containing grossly obtuse angles often cause
this dysfunctionality; and in addition, triangles that
contain an obtuse angle between a very small and a
very large side are also susceptible. However, it is
easy to show that this construction can be success-
fully applied to all acute triangles and all isosceles
triangles. Figure 5 displays the set of valid triangles
under this construction.

We have also shown that it is not possible to de-

construct a discordant triangle into usable triangles
with the help of additional interior points or Steiner
points. The complexity of this process is compounded
by the requirement that additional points would be
inserted into a discordant triangle’s isomorphic tri-
angle as well. Isomorphic triangulations that avoid
triangles of this type are of great interest.

Achieving an optimal triangulation by minimiz-
ing the maximum angle in a triangulated mesh has
been the source of extensive research. Lawson [7] has
shown that the Delauney triangulation achieves this
property in two dimensions. In addition, Bern and
Eppstein [5] discuss optimal triangulations while ex-
amining various formulations of optimality.

4 Implementation

We have implemented this homeomorphism in C++
using the Library of Efficient Data Types and Al-
gorithms (LEDA) version 4.1, maintained by Algo-
rithmic Solutions. Our implementation can be found
at http://www.eecs.tufts.edu/r/geometry/dhm. Our
program generated the images shown in Figure 6 by
applying the mapping described above between the
two isomorphically triangulated polygons. The pro-
gram first calculated the triangular coordinates from
the Cartesian coordinates of the points along a series
of vertical parallel lines in the first polygon. It then
used those same triangular coordinates to compute
the Cartesian coordinates of the points in the second
polygon. As you can see, the image of the parallel
lines is smooth as it crosses triangle boundaries.

A drawback of this implementation is that round-
ing and calculation errors frequently occur when con-
verting points from Cartesian to triangular coordi-
nates.

5 Further Research

This paper leaves one major question unanswered:
how might one prove that homeomorphism presented
in this paper is differentiable? The conversion of a
triangular coordinate system to a Cartesian coordi-
nate system is rather complex; it is far more complex
than the conversion from polar to Cartesian. As a
result, the formulation of a function obtained using
the triangular coordinate system in terms of Carte-
sian or polar coordinates is also unclear. In addition,



Figure 6: The effect of a homeomorphism mapping
P onto @Q using triangular coordinates.

the apparent requirement that the centroid be used
as the center point for the coordinate systems is not
fully understood. These issues contribute substan-
tially to the difficulty of proving the differentiability
over triangular boundaries of this homeomorphism.
Methods similar to those used for analyzing primal-
dual relationships have been suggested, however fur-
ther insights are needed.

A second question is more interesting. Given two
planar point sets, two simple polygons, or two poly-
gons with holes, each defined on m points, isomor-
phic triangulations of the input sets can be produced,
adding at most ©(n?) vertices [2, 3, 9]. Can non-
obtuse isomorphic triangulations be produced? At a
cost of how many additional vertices?
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