
Pseudoinstructions in the MiniMIPS assembly language

We have learned many basic instructions for MiniMIPS in our lectures, such as add, and, jal, etc.

It is, on the other hand, sometimes easier and more natural to use some alternative formulations.

They are collectively called pseudoinstructions. The MiniMIPS assembler is responsible for

translating them into the basic instructions.

For instance, we can use the following instruction:

 nor $s0, $s0, $zero

to invert each bit in register $s0. But it would be natural to understand and write the operation as

 not $s0

Toward this end, we thus define not to be a pseudointruction in MiniMIPS. It is treated as an

ordinary instruction by the MiniMIPS assembler and is replaced by the equivalent nor

instruction as above, before the assembler converts it into its binary format.

Some pseudoinstructions can be replaced by more than one instruction and may involve some

intermediate values. Recall that in the register file, there is a register called $at. Usually,

MiniMIPS assembler uses this register for intermediate values. Look at the following

pseudointrouction abs, which places the absolute value of the content of a source register into a

destination register.

 abs $t0, $s0 # put |($s0)| into $t0

The MiniMIPS assembler might translate the pseudoinstruction into the following sequence of

four basic instructions.

 add $t0, $s0, $zero # copy the operand x into $t0

 slt $at, $t0, $zero # is x negative?

 beq $at, $zero, +4 # if not, skip the next instruction

 sub $t0, $zero, $s0 # the result is 0 – x

The following table lists those frequently-used pseudoinstructions provided by MiniMIPS.

Pseudoinstruction Usage Meaning

Move move regd, regs regd ← (regs)

Load address la regd, address load computer address, not content

Load immediate li regd, anyimm regd ← immediate value

Absolute value abs regd, regs regd ← |(regs)|

Negate neg regd, regs regd ← - (regs)

Multiply (into register) mul regd,reg1,reg2 regd ← (reg1) × (reg2)

Divide (into register) div regd,reg1,reg2 regd ← (reg1) ÷ (reg2)

Remainder rem regd,reg1,reg2 regd ← (reg1) mode (reg2)

Set greater than sgt regd,reg1,reg2 regd ← if (reg1) > (reg2) then 1 else 0

Set less or equal sle regd,reg1,reg2 regd ← if (reg1) ≤ (reg2) then 1 else 0

Set greater or equal sge regd,reg1,reg2 regd ← if (reg1) ≥ (reg2) then 1 else 0

Rotate left rol regd,reg1,reg2 regd ← (reg1) left rotated by (reg2)

Rotate right ror regd,reg1,reg2 regd ← right left rotated by (reg2)

NOT not reg reg ← (reg)'

Load doubleword ld regd,address load regd and the next register

Store doubleword sd regd,address store regd and the next register

Branch less than blt reg1,reg2,L if (reg1) < (reg2) then goto L

Branch greater than bgt reg1,reg2,L if (reg1) > (reg2) then goto L

Branch less or equal ble reg1,reg2,L if (reg1) ≤ (reg2) then goto L

Branch greater or equal bge reg1,reg2,L if (reg1) ≥ (reg2) then goto L

